首页> 中文期刊> 《计算机研究与发展》 >基于敏感属性值语义桶分组的t-closeness隐私模型

基于敏感属性值语义桶分组的t-closeness隐私模型

     

摘要

t-closeness模型是数据发布领域中用于抵御相似性攻击和偏斜攻击的一种有效方法,但其采用的EMD(earth mover's distance)距离没有考虑等价类与数据表间敏感属性分布的稳定性,不能全面地衡量分布间距离,在分布间稳定差异过大时会大大提高隐私泄露的风险.针对这种局限,提出了一种SABuk t-closeness模型,它在传统t-closeness模型的基础上,为更加准确地度量分布间距离,以EMD距离与KL散度(kullback-leibler divergence)结合构建距离度量标准.同时,根据敏感属性的层次树结构,对数据表进行语义相似性桶分组划分,然后采用贪心思想生成满足要求的最小等价类,并且运用k-近邻的思想来选取QI(quasi-identifiers)值相似的元组生成等价类.实验结果表明,SABuk t-closeness模型在牺牲少量时间的前提下减少了信息损失,能在有效地保护敏感信息不泄露的同时保持较高的数据效用.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号