首页> 外文期刊>Computers & Security >Detection of malicious and low throughput data exfiltration over the DNS protocol
【24h】

Detection of malicious and low throughput data exfiltration over the DNS protocol

机译:通过DNS协议检测恶意和低吞吐量数据泄露

获取原文
获取原文并翻译 | 示例

摘要

In the presence of security countermeasures, a malware designed for data exfiltration must use a covert channel to achieve its goal. The Domain Name System (DNS) protocol is a covert channel commonly used by malware developers today for this purpose. Although the detection of covert channels using the DNS has been studied for the past decade, prior research has largely dealt with a specific subclass of covert channels, namely DNS tunneling. While the importance of tunneling detection should not be minimized, an entire class of low throughput DNS exfiltration malware has been overlooked. In this study, we propose a method for detecting both tunneling and low throughput data exfiltration over the DNS. After determining that previously detected malware used Internet domains that were registered for a cyber-campaign rather than compromising existing legitimate domains, we focus on detecting and denying requests to these domains as an effective data leakage shutdown. Therefore, our proposed solution handles streaming DNS traffic in order to detect and automatically deny requests to domains that are used for data exchange. The initial data collection phase collects DNS logs per domain in a manner that permits scanning for long periods of time, and is thus capable of dealing with "low and slow" attacks. In the second phase features are extracted based on the querying behavior of each domain, and in the last phase an anomaly detection model is used to classify domains based on their use for data exfiltration. With regard to detection, DNS requests to domains that were classified as being used for data exfiltration will be denied indefinitely. Our method was evaluated on a large-scale recursive DNS server's logs with a peaking high of 47 million requests per hour. Within these DNS logs, we injected data exfiltration traffic from DNS tunneling tools as well as two real-life malware: FrameworkPOS, previously used for the theft of 56M credit cards from Home Depot in 2014, and Backdoor.Win32.Denis, which was active in the Cobalt Kitty APT in 2016. Even when restricting our method to an extremely low false positive rate (i.e., one in fifty thousand domains), it detected all of the above. In addition, the logs are used to compare our system with two recently published methods that focus on detecting DNS tunneling in order to stress the novelty of detecting low throughput exfiltration malware. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在存在安全对策的情况下,设计用于数据泄露的恶意软件必须使用隐蔽渠道来实现其目标。域名系统(DNS)协议是当今恶意软件开发人员通常用于此目的的秘密通道。尽管在过去的十年中已经研究了使用DNS对隐蔽通道进行检测的方法,但是现有研究主要涉及隐蔽通道的特定子类,即DNS隧道。虽然不应最小化隧道检测的重要性,但一整套低吞吐量DNS渗透恶意软件已被忽略。在这项研究中,我们提出了一种用于检测隧道传输和DNS上的低吞吐量数据泄漏的方法。确定先前检测到的恶意软件使用的是注册用于网络活动的Internet域,而不是破坏现有的合法域之后,我们将重点放在检测和拒绝对这些域的请求上,以作为有效的数据泄漏关闭。因此,我们提出的解决方案处理流DNS流量,以便检测并自动拒绝对用于数据交换的域的请求。初始数据收集阶段以允许长时间扫描的方式为每个域收集DNS日志,因此能够处理“低速和慢速”攻击。在第二阶段,基于每个域的查询行为提取特征,在最后一个阶段,使用异常检测模型根据域用于数据渗透的方式对域进行分类。关于检测,将无限期拒绝对被分类为用于数据渗透的域的DNS请求。我们的方法是在大规模递归DNS服务器的日志上进行评估的,其最高峰值为每小时4,700万个请求。在这些DNS日志中,我们注入了来自DNS隧道工具以及两种现实生活中的恶意软件的数据泄露流量:FrameworkPOS(以前用于2014年从Home Depot盗窃5600万张信用卡),以及Backdoor.Win32.Denis(处于活动状态)在2016年的Cobalt Kitty APT中。即使将我们的方法限制为极低的假阳性率(即五万个域中的一个),它也能检测到所有上述内容。此外,日志还用于将我们的系统与两种最新发布的方法进行比较,这些方法侧重于检测DNS隧道,以强调检测低吞吐量渗透恶意软件的新颖性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号