首页> 外文期刊>Computers & Security >Greedy and evolutionary algorithms for mining relationship-based access control policies
【24h】

Greedy and evolutionary algorithms for mining relationship-based access control policies

机译:用于挖掘基于关系的访问控制策略的贪婪和进化算法

获取原文
获取原文并翻译 | 示例

摘要

Relationship-based access control (ReBAC) provides a high level of expressiveness and flexibility that promotes security and information sharing. We formulate ReBAC as an object-oriented extension of attribute-based access control (ABAC) in which relationships are expressed using fields that refer to other objects, and path expressions are used to follow chains of relationships between objects. ReBAC policy mining algorithms have potential to significantly reduce the cost of migration from legacy access control systems to ReBAC, by partially automating the development of a ReBAC policy from an existing access control policy and attribute data. This paper presents two algorithms for mining ReBAC policies from access control lists (ACLs) and attribute data represented as an object model: a greedy algorithm guided by heuristics, and a grammar-based evolutionary algorithm. An evaluation of the algorithms on four sample policies and two large case studies demonstrates their effectiveness. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于关系的访问控制(ReBAC)提供了高水平的表现力和灵活性,可促进安全性和信息共享。我们将ReBAC表示为基于属性的访问控制(ABAC)的面向对象扩展,其中使用引用其他对象的字段表示关系,并且使用路径表达式遵循对象之间的关系链。通过根据现有访问控制策略和属性数据部分自动执行ReBAC策略的开发,ReBAC策略挖掘算法具有极大地降低从传统访问控制系统到ReBAC迁移的成本的潜力。本文提出了两种从访问控制列表(ACL)和表示为对象模型的属性数据中挖掘ReBAC策略的算法:一种基于启发式算法的贪婪算法和一种基于语法的进化算法。对算法的评估基于四个样本策略和两个大型案例研究证明了它们的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号