首页> 外文OA文献 >Greedy and evolutionary algorithms for mining relationship-based access control policies
【2h】

Greedy and evolutionary algorithms for mining relationship-based access control policies

机译:基于关系的访问控制策略的贪婪和进化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Relationship-based access control (ReBAC) provides a high level ofexpressiveness and flexibility that promotes security and information sharing.We formulate ReBAC as an object-oriented extension of attribute-based accesscontrol (ABAC) in which relationships are expressed using fields that refer toother objects, and path expressions are used to follow chains of relationshipsbetween objects. ReBAC policy mining algorithms have potential to significantly reduce thecost of migration from legacy access control systems to ReBAC, by partiallyautomating the development of a ReBAC policy from an existing access controlpolicy and attribute data. This paper presents an algorithm for mining ReBACpolicies from access control lists (ACLs) and attribute data represented as anobject model, and an evaluation of the algorithm on four sample policies andtwo large case studies. Our algorithm can be adapted to mine ReBAC policiesfrom access logs and object models. It is the first algorithm for theseproblems.
机译:基于关系的访问控制(REBAC)提供了高水平的表单和灵活性,可促进安全性和信息共享。我们将REBAC标记为面向对象的基于AccessControl(ABAC)的扩展,其中使用引用其他对象的字段表示关系,路径表达式用于遵循关系的ChraceSween对象。 rebac策略挖掘算法有可能显着降低传统访问控制系统迁移的迁移,以通过从现有的访问控制Policy和属性数据开发rebac策略的开发来rebac。本文介绍了一种从访问控制列表(ACL)和属性数据所示的挖掘regacpolicies和表示为Anobject模型的属性数据,以及在四个样本策略中评估算法,并进行大型案例研究。我们的算法可以根据Access Regs和Object模型进行调整为挖掘Rebac Policize。它是The MepleSPROBLS的第一个算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号