首页> 外文期刊>Computers & Security >A second look at the performance of neural networks for keystroke dynamics using a publicly available dataset
【24h】

A second look at the performance of neural networks for keystroke dynamics using a publicly available dataset

机译:使用公开可用的数据集再次了解神经网络在按键动力学方面的性能

获取原文
获取原文并翻译 | 示例

摘要

Keystroke Dynamics, which is a biometric characteristic that depends on typing style of users, could be a viable alternative or a complementary technique for user authentication if tolerable error rates are achieved. Most of the earlier studies on Keystroke Dynamics were conducted with irreproducible evaluation conditions therefore comparing their experimental results are difficult, if not impossible. One of the few exceptions is the work done by Killourhy and Maxion, which made a dataset publicly available, developed a repeatable evaluation procedure and evaluated the performance of different methods using the same methodology. In their study, the error rate of neural networks was found to be one of the worst-performing. In this study, we have a second look at the performance of neural networks using the evaluation procedure and dataset same as in Killourhy and Maxion's work. We find that performance of artificial neural networks can outperform all other methods by using negative examples. We conduct comparative tests of different algorithms for training neural networks and achieve an equal error rate of 7.73% with Leven-berg-Marquardt backpropagation network, which is better than equal error rate of the best-performing method in Killourhy and Maxion's work.
机译:击键动力学是一种生物特征,取决于用户的键入样式,如果可以达到允许的错误率,则它可以是可行的替代方法或对用户身份验证的补充技术。大部分有关击键动力学的早期研究都是在不可重复的评估条件下进行的,因此比较其实验结果非常困难,即使不是不可能。少数例外之一是Killourhy和Maxion所做的工作,他们公开了一个数据集,开发了可重复的评估程序,并使用相同的方法评估了不同方法的性能。在他们的研究中,发现神经网络的错误率是性能最差的错误率之一。在这项研究中,我们使用与Killourhy和Maxion的工作相同的评估程序和数据集,再次研究了神经网络的性能。我们发现,通过使用负面示例,人工神经网络的性能可以胜过所有其他方法。我们对训练神经网络的不同算法进行了对比测试,并使用Levenberg-Marquardt反向传播网络实现了7.73%的均等错误率,这优于Killourhy和Maxion的最佳性能方法的均等错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号