首页> 外文期刊>Computers & Security >Caller-REP: Detecting unwanted calls with caller social strength
【24h】

Caller-REP: Detecting unwanted calls with caller social strength

机译:Caller-REP:利用呼叫者的社交能力检测不需要的呼叫

获取原文
获取原文并翻译 | 示例

摘要

Voice over IP (VoIP) is a cost effective mechanism for telemarketers and criminals to generate bulk spam calls. A challenge in managing a VoIP network is to detect spam calls without user involvement or content analysis. In this paper we present a novel content independent, non-intrusive approach based on caller trust and reputation to block spam callers in a VoIP network. Our approach uses call duration, interaction rate, and caller out-degree distribution to establish a trust network between VoIP users and computes the global reputation of a caller across the network. Our approach uses historical information for automatically determining a global reputation threshold below which a caller is declared as socially non-connected and as a spammer. No VoIP data-set is available for testing the detection mechanism. We verify the accuracy of our approach with synthetic data that we generate by randomly varying the call duration, call rate, and out-degree distributions of spammers and legitimate users. This evaluation shows that our approach can automatically detect spam callers in a network. Our approach achieves a false positive rate of less than 10% and true positive rate of almost 80% in the first two days even in the presence of a significant number of spammers. This increases to a true positive rate of 99% and drops a false positive rate to less than 2% on the third day. In a network with no spammers, our approach achieves a false positive rate of less than 10%. In a network heavily saturated with more than 60% of spam callers, our approach achieves a true positive rate of 98% and no false positives. We compare the performance of our approach with a closely related spam detection approach named Call-Rank. The results show that our approach outperforms Call-Rank in terms of detection accuracy and detection time.
机译:IP语音(VoIP)是电话推销员和犯罪分子产生大量垃圾邮件的一种经济有效的机制。管理VoIP网络的一个挑战是在没有用户参与或内容分析的情况下检测垃圾邮件。在本文中,我们提出了一种基于呼叫者信任度和信誉的新颖的内容独立,非侵入性的方法,可以阻止VoIP网络中的垃圾邮件呼叫者。我们的方法使用呼叫持续时间,交互速率和呼叫者出站程度分布来在VoIP用户之间建立信任网络,并计算整个网络中呼叫者的全球声誉。我们的方法使用历史信息来自动确定全球声誉阈值,在该阈值以下,呼叫者被宣布为社交未连接用户和垃圾邮件发送者。没有VoIP数据集可用于测试检测机制。我们使用随机产生的垃圾邮件发送者和合法用户的通话时长,通话率以及出站分布来生成的综合数据,验证了我们方法的准确性。评估表明,我们的方法可以自动检测网络中的垃圾邮件呼叫者。即使存在大量垃圾邮件发送者,我们的方法也可以在头两天内实现不到10%的假阳性率和接近80%的真阳性率。在第三天,这会增加99%的真实阳性率,而将假阳性率降至2%以下。在没有垃圾邮件发送者的网络中,我们的方法可以实现小于10%的误报率。在一个充满60%以上垃圾邮件发起者的网络中,我们的方法实现了98%的真实肯定率,没有假阳性。我们将这种方法的性能与称为Call-Rank的紧密相关的垃圾邮件检测方法进行了比较。结果表明,在检测准确性和检测时间方面,我们的方法优于Call-Rank。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号