首页> 外文期刊>Computers & Security >A comparative analysis of detection metrics for covert timing channels
【24h】

A comparative analysis of detection metrics for covert timing channels

机译:秘密定时通道检测指标的比较分析

获取原文
获取原文并翻译 | 示例

摘要

Methods to detect covert timing channels (CTCs) can be categorized into three broad classes: shape tests which include the Kolmogorov-Smirnov (KS) test, entropy tests which include first order entropy test, corrected conditional entropy (CCE) test, and Kullback-Leibler (KL) divergence test, and regularity tests. This paper contributes towards understanding and advancing the state-of-the-art of CTC detection methods. First, we present a detailed analysis of the performance of the well-known tests that are used to detect three main types of CTCs, namely, JitterBug, model-based CTC (MB-CTC) and time-replay CTC (TR-CTC). The performance analysis is carried out in an enterprise-like setting, employing large traffic traces. The detection methods are compared with respect to their applicability, computational complexity, and the classification rates for the three types of CTCs. In addition to evaluating the existing methods, we propose a new shape test based on the Welch's t-test and compare its performance with existing detection methods. We show that the classification rate of Welch's t-test is at least at par with other existing detection methods while having a relatively lower computational cost. The results also show that the Welch's t-test outperforms the CCE test in detecting JitterBug, while the CCE test has a better performance in detecting the TR-CTC. Furthermore, both tests perform comparably on the MB-CTC. Finally, we study the feasibility of using a multi-feature SVM classifier to increase the classification rate. We show that by combining the Welch's t-test we are able to increase the classification rate of MB-CTCs from 0.67 (using a single regularity measure) to 0.94.
机译:检测隐蔽时间通道(CTC)的方法可以分为三大类:形状测试(包括Kolmogorov-Smirnov(KS)测试),熵测试(包括一阶熵测试),校正条件熵(CCE)测试和Kullback- Leibler(KL)散度测试和规律性测试。本文有助于理解和改进CTC检测方法的最新技术。首先,我们对众所周知的测试性能进行详细分析,这些测试用于检测三种主要类型的CTC,即JitterBug,基于模型的CTC(MB-CTC)和时间重播CTC(TR-CTC) 。性能分析是在类似企业的环境中进行的,使用了大流量跟踪。比较了这三种CTC的检测方法的适用性,计算复杂性和分类率。除了评估现有方法之外,我们还提出了一种基于Welch t检验的新形状测试,并将其性能与现有检测方法进行比较。我们表明,韦尔奇t检验的分类率至少与其他现有检测方法相当,而计算成本却相对较低。结果还表明,Welch的t检验在检测JitterBug方面优于CCE检验,而CCE检验在检测TR-CTC方面具有更好的性能。此外,两种测试在MB-CTC上的性能均相当。最后,我们研究了使用多功能SVM分类器提高分类率的可行性。我们表明,通过结合Welch的t检验,我们可以将MB-CTC的分类率从0.67(使用单个规则性度量)提高到0.94。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号