首页> 外文期刊>Computers & operations research >A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations
【24h】

A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations

机译:充电站时间窗口电动汽车路由问题的基于模拟的启发式问题

获取原文
获取原文并翻译 | 示例

摘要

The Electric Vehicle Routing Problem with Time Windows and Stochastic Waiting Times at Recharging Stations is an extension of the Electric Vehicle Routing Problem with Time Windows where the electric vehicles (EVs) may wait in a queue before the recharging service starts due to limited number of chargers available at stations. Since the customers and the depot are associated with time windows, long waiting times at the stations in addition to the recharging times may cause disruptions in logistics operations. To solve this problem, we present a two-stage simulation-based heuristic using Adaptive Large Neighborhood Search (ALNS). In the first stage, the routes are determined using expected waiting time values at the stations. While the vehicles are following their tours, upon arrival at the stations, their queueing times are revealed. If the actual waiting time at a station exceeds its expected value, the time windows of the subsequent customers on the route may be violated. In this case, the second stage corrects the infeasible solution by penalizing the time-window violations and late returns to the depot. The proposed ALNS applies several destroy and repair operators adapted for this specific problem. In addition, we propose a new adaptive mechanism to tune the constant waiting times used in finding the first-stage solution. To investigate the performance of the proposed approach and the influence of the stochastic waiting times on routing decisions and costs, we perform an experimental study using both small and large instances from the literature. The results show that the proposed simulation-based solution approach provides good solutions both in terms of quality and of computational time. It is shown that the uncertainty in waiting times may have significant impact on route plans. (C) 2020 Elsevier Ltd. All rights reserved.
机译:电动车辆路由问题随着时间窗口和随机等待时间在充电站的延伸是电动车辆路由问题的时间窗口,其中电动车辆(EVS)可以在充电服务之前在队列中等待在充电服务中的有限的充电器之前在车站提供。由于客户和仓库与时间窗口相关联,因此除了充电时间之外,该站的漫长等待时间可能导致物流操作中断。为了解决这个问题,我们使用自适应大邻域搜索(ALNS)提出了一种基于两阶段的模拟的启发式。在第一阶段,路线使用站的预期等候时间值确定。虽然车辆正在追随他们的旅行,但在抵达车站时,他们的排队时间被揭露。如果站在站的实际等待时间超过其预期值,则可能会违反路线上随后的客户的时间窗口。在这种情况下,第二阶段通过惩罚时间窗口违规而恢复到达仓库来校正不可行的解决方案。拟议的ALN适用于适用于此特定问题的几个破坏和修复运营商。此外,我们提出了一种新的自适应机制来调整用于找到第一阶段解决方案的恒定等待时间。为了调查拟议方法的性能和随机等待时间对路由决策和成本的影响,我们使用文献中的小型和大型实例进行实验研究。结果表明,基于仿真的解决方案方法在质量和计算时间方面都提供了良好的解决方案。结果表明,等待时间的不确定性可能对路线计划产生重大影响。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号