首页> 外文期刊>Computers & operations research >Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows
【24h】

Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows

机译:有效的邻域搜索,对于Time Windows的团队导演问题的最佳分裂和自适应内存

获取原文
获取原文并翻译 | 示例

摘要

The Team Orienteering Problem with Time Windows (TOPTW) is an extension of the well-known Orienteering Problem. Given a set of locations, each one associated with a profit, a service time and a time window, the objective of the TOPTW is to plan a set of routes, over a subset of locations, that maximizes the total collected profit while satisfying travel time limitations and time window constraints. Within this paper, we present an effective neighborhood search for the TOPTW based on (1) the alternation between two different search spaces, a giant tour search space and a route search space, using a powerful splitting algorithm, and (2) the use of a long term memory mechanism to keep high quality routes encountered in elite solutions. We conduct extensive computational experiments to investigate the contribution of these components, and measure the performance of our method on literature benchmarks. Our approach outperforms state-of-the-art algorithms in terms of overall solution quality and computational time. It finds the current best known solutions, or better ones, for 89% of the literature instances within reasonable runtimes. Moreover, it is able to achieve better average deviation than state-of-the-art algorithms within shorter computation times. Moreover, new improvements for 57 benchmark instances were found. (C) 2020 Elsevier Ltd. All rights reserved.
机译:Time Windows(TopTW)的团队定向问题是众所周知的定向事件问题的延伸。给定一组位置,每个位置与利润,服务时间和时间窗口相关联,顶点的目标是在一个位置上规划一组路由,在一个位置上,最大化总收集的利润,同时满足行驶时间。限制和时间窗口约束。在本文中,我们介绍了一种基于(1)两个不同的搜索空间,巨型旅游搜索空间和路线搜索空间之间的交替的TopTW的有效邻域搜索,使用强大的分裂算法,以及(2)使用长期内存机制,以保持精英解决方案中遇到的高质量路线。我们开展广泛的计算实验,以调查这些组件的贡献,并衡量我们对文学基准的方法的性能。我们的方法在整体解决方案质量和计算时间方面优于最先进的算法。它找到了当前最着名的解决方案,或更好的解决方案,在合理的运行中有89%的文献实例。此外,能够在更短的计算时间内实现比最先进的算法更好的平均偏差。此外,找到了57个基准实例的新改进。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号