首页> 外文期刊>Computers & operations research >A systematic study on meta-heuristic approaches for solving the graph coloring problem
【24h】

A systematic study on meta-heuristic approaches for solving the graph coloring problem

机译:求解图着色问题的荟萃启发式方法的系统研究

获取原文
获取原文并翻译 | 示例

摘要

Typically, Graph Coloring Problem (GCP) is one of the key features for graph stamping in graph theory. The general approach is to paint at least edges, vertices, or the surface of the graph with some colors. In the simplest case, a kind of coloring is preferable in which two vertices are not adjacent to the same color. Similarly, the two edges in the same joint should not have the same color. In addition, the same goes for the surface color of the graph. This is one of the NP-hard issues well studied in graph theory. Therefore, many different meta-heuristic techniques are presented to solve the problem and provide high performance. Seemingly, regardless of the importance of the nature-stimulated meta-heuristic methods to solve the GCP, there is not any inclusive report and detailed review about overviewing and investigating the crucial problems of the field. As a result, the present study introduces a wide-ranging reporting of nature- stimulated meta-heuristic methods, which are used throughout the graph coloring. The literature review contains a classification of significant techniques. This study mainly aims at emphasizing the optimization algorithms to handle the GCP problems. Furthermore, the advantages and disadvantages of the meta-heuristic algorithms in solving the GCP and their key issues are examined to offer more advanced meta-heuristic techniques in the future. (C) 2019 Published by Elsevier Ltd.
机译:通常,图形着色问题(GCP)是图表理论中的图表冲压的关键特征之一。一般方法是用一些颜色绘制至少边缘,顶点或图表的表面。在最简单的情况下,优选一种着色,其中两个顶点不与相同的颜色相邻。类似地,同一关节中的两个边缘不应具有相同的颜色。此外,图表的表面颜色也是如此。这是图表理论中研究的NP难题之一。因此,提出了许多不同的荟萃启发式技术来解决问题并提供高性能。似乎,无论自然刺激的元启发式方法如何解决GCP的重要性,没有任何包容性报告和关于概述和调查该领域至关重要问题的详细审查。结果,本研究介绍了在整个图形着色中使用的自然刺激的元启发式方法的广泛报告。文献综述包含重要技术的分类。本研究主要旨在强调优化算法来处理GCP问题。此外,研究了解决GCP的元启发式算法及其关键问题的优点和缺点,以便将来提供更先进的元启发式技术。 (c)2019年由elestvier有限公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号