首页> 外文期刊>Computers & operations research >A survey on kriging-based infill algorithms for multiobjective simulation optimization
【24h】

A survey on kriging-based infill algorithms for multiobjective simulation optimization

机译:基于克里金法的多目标填充优化算法研究

获取原文
获取原文并翻译 | 示例

摘要

This article surveys the most relevant kriging-based infill algorithms for multiobjective simulation optimization. These algorithms perform a sequential search of so-called infill points, used to update the kriging metamodel at each iteration. An infill criterion helps to balance local exploitation and global exploration during this search by using the information provided by the kriging metamodels. Most research has been done on algorithms for deterministic problem settings; only very recently, algorithms for noisy simulation outputs have been proposed. Yet, none of these algorithms so far incorporates an effective way to deal with heterogeneous noise, which remains a major challenge for future research. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文概述了用于多目标仿真优化的最相关的基于kriging的填充算法。这些算法对所谓的填充点进行顺序搜索,用于在每次迭代时更新kriging元模型。通过使用克里金元模型提供的信息,填充标准有助于在此搜索过程中平衡本地开采和全球勘探。大多数研究已经针对确定性问题设置算法进行了研究。仅在最近,才提出了用于噪声模拟输出的算法。但是,到目前为止,这些算法都没有一种有效的方法来处理异构噪声,这仍然是未来研究的主要挑战。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号