首页> 外文期刊>Journal of algorithms & computational technology >A Kriging-based global optimization method using multi-points infill search criterion
【24h】

A Kriging-based global optimization method using multi-points infill search criterion

机译:基于Kriging的多点填充搜索准则全局优化方法

获取原文
获取原文并翻译 | 示例

摘要

The efficient global optimization algorithm-based Kriging is adaptive to solve expensive simulation optimization problems. Expected improvement criterion with minimum predicted objective and maximum standard deviation in efficient global optimization is optimized to find the next optimum. However, the single-point infill sampling criteria and multimodality of expected improvement will result in a large number of simulation time consumption, low search efficiency, and poor convergence performance. To improve this situation, a Kriging-based global optimization method using multi-points infill search criterion is proposed. Unlike efficient global optimization, it uses multi-objective optimization methods to minimize the objective estimation and maximize standard deviation estimation for Kriging model. The criterion selects and screens multiple update sampling points based on Pareto optimal solutions from the Pareto front. The optimization method is tested by the nine numerical problems and an engineering simulation application. In contrast with efficient global optimization, the proposed method is able to deliver good optimization results in search efficiency and convergence accuracy.
机译:基于有效全局优化算法的Kriging可以自适应地解决昂贵的仿真优化问题。在有效的全局优化中优化具有最小预测目标和最大标准偏差的预期改进标准,以找到下一个最优值。但是,单点填充采样标准和预期改进的多模态将导致大量仿真时间消耗,低搜索效率和较差的收敛性能。为了改善这种情况,提出了一种使用多点填充搜索准则的基于Kriging的全局优化方法。与有效的全局优化不同,它使用多目标优化方法来最小化Kriging模型的目标估计并最大化标准偏差估计。该标准从Pareto前端基于Pareto最优解选择并筛选多个更新采样点。通过九个数值问题和工程仿真应用对优化方法进行了测试。与有效的全局优化相反,所提出的方法能够在搜索效率和收敛精度上提供良好的优化结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号