首页> 外文期刊>Computers & operations research >Designing radio-mobile access networks based on synchronous digital hierarchy rings
【24h】

Designing radio-mobile access networks based on synchronous digital hierarchy rings

机译:基于同步数字体系环设计无线移动接入网

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the SDH network design problem (SDHNDP) which arises while designing the fixed part of global system for mobile communications access networks using synchronous digital hierarchy (SDH) rings. An SDH ring is a simple cycle that physically links a subset of antennae to a single concentrator. Inside a ring, a concentrator handles the total traffic induced by antennae. Technological considerations limit the number of antennae and the total length of a ring. The SDHNDP is a new problem. It belongs to a class of location-routing problems that introduce location into the multi-depot vehicle routing problem. In this paper, we precisely describe the SDHNDP and propose a mixed integer prograrnming-based model for it. Furthermore, we devise a heuristic algorithm that computes a feasible solution. We report the results of our computational experiments using the CPLEX software, on instances comprising up to 70 antennae or six concentrator sites. An analysis provides insight into the behavior of the lower bound obtained by the LP relaxation of the model, in response to the network density. This lower bound can be improved by adding some valid inequalities. We show that an interesting cut can be obtained by approximating the minimum number of rings in any feasible solution. This can be achieved by solving a "minimum capacitated partition problem". Finally, we compare the lower bound to the heuristic solution value for a set of instances.
机译:在本文中,我们解决了SDH网络设计问题(SDHNDP),该问题是在使用同步数字体系(SDH)环设计全球移动通信接入网络系统固定部分时出现的。 SDH环是一个简单的周期,可将天线的子集物理链接到单个集中器。在环内,集中器处理由天线引起的总流量。技术上的考虑限制了天线的数量和环的总长度。 SDHNDP是一个新问题。它属于一类位置路由问题,它将位置引入多仓库车辆路由问题。在本文中,我们精确地描述了SDHNDP,并为此提出了一个基于混合整数编程的模型。此外,我们设计了一种启发式算法,可以计算出可行的解决方案。我们使用CPLEX软件报告计算实验的结果,该实例包含多达70个天线或六个集中器站点。分析提供了对模型的LP松弛响应网络密度而获得的下限行为的深入了解。可以通过添加一些有效的不等式来改善此下限。我们表明,可以通过在任何可行的解决方案中近似最小的环数来获得有趣的切割。这可以通过解决“最小容量划分问题”来实现。最后,我们将下限与一组实例的启发式解决方案值进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号