首页> 外文期刊>Computers & operations research >A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families
【24h】

A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families

机译:具有动态作业到达和不兼容作业族的并行相同批处理机器上的最大延迟最小化的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals. We propose a family of iterative improvement heuristics based on previous work by Potts [Analysis of a heuristic for one machine sequencing with release dates and delivery times. Operations Research 1980;28:1436-41] and Uzsoy [Scheduling batch processing machines with incompatible job families. International Journal for Production Research 1995;33(10):2685-708] and combine them with a genetic algorithm (GA) based on the random keys encoding of Bean [Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 1994;6(2): 154-60]. Extensive computational experiments show that one of the proposed GAs runs significantly faster than the other, providing a good tradeoff between solution time and quality. The combination of iterative heuristics with GAs consistently outperforms the iterative heuristics on their own.
机译:我们考虑在具有动态作业到达的并行相同批处理机器上最大程度地减少最大延迟的问题。我们根据Potts的先前工作提出了一系列迭代改进启发式方法[分析具有发布日期和交付时间的一台机器排序的启发式方法。 Operations Research 1980; 28:1436-41]和Uzsoy [安排工作系列不兼容的批处理机器。 International Journal for Production Research 1995; 33(10):2685-708],并将其与基于Bean的随机密钥编码的遗传算法(GA)结合使用[遗传算法和用于排序和优化的随机密钥。 ORSA Journal on Computing 1994; 6(2):154-60]。大量的计算实验表明,提出的一种GA的运行速度明显快于另一种,从而在求解时间和质量之间取得了很好的平衡。迭代启发式算法与GA的结合始终优于单独的迭代启发式算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号