首页> 外文期刊>Computers & operations research >A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows
【24h】

A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows

机译:具有自适应分集管理的混合遗传算法,用于一类带有时间窗的大型车辆路径问题

获取原文
获取原文并翻译 | 示例

摘要

The paper presents an efficient Hybrid Genetic Search with Advanced Diversity Control for a large class of time-constrained vehicle routing problems, introducing several new features to manage the temporal dimension. New move evaluation techniques are proposed, accounting for penalized infeasible solutions with respect to time-window and duration constraints, and allowing to evaluate moves from any classical neighbourhood based on arc or node exchanges in amortized constant time. Furthermore, geometric and structural problem decompositions are developed to address efficiently large problems. The proposed algorithm outperforms all current state-of-the-art approaches on classical literature benchmark instances for any combination of periodic, multi-depot, site-dependent, and duration-constrained vehicle routing problem with time windows.
机译:本文针对一类时间受限的车辆路径问题,提出了一种具有高级多样性控制的有效混合遗传搜索方法,并介绍了一些新的功能来管理时间维度。提出了新的移动评估技术,考虑了关于时间窗口和持续时间约束的不可行的惩罚性解决方案,并允许在摊销的恒定时间内基于弧或节点交换评估来自任何经典邻域的移动。此外,开发了几何和结构问题分解以有效解决大问题。对于具有时间窗的周期性,多站点,依赖站点和持续时间受限的车辆路径问题的任何组合,所提出的算法均优于经典文献基准实例上的所有当前最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号