首页> 外文期刊>Computers & operations research >Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design
【24h】

Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design

机译:随机网络设计中基于渐进对冲的基于元启发式的方案分组

获取原文
获取原文并翻译 | 示例

摘要

We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence.
机译:我们提出了一种方法论方法,以根据场景分解的类型,分组的类型以及指定场景相似性的措施来定义用于对场景进行分组的策略。我们通过分析新的基于渐进对冲的随机网络设计的元启发式算法的行为和性能,来评估随机网络设计中的这些策略,该算法可解决包含多个场景的子问题。我们不仅将所提议的策略相互比较,而且还与将场景随机分组的策略以及最新MIP求解器提供的下限进行了比较。结果表明,通过解决我们提出的策略产生的多场景子问题,与启发式选择产生的单场景子问题或多场景子问题相比,元启发式方法在解决方案质量和计算效率方面产生更好的结果。解决了随机场景。结果还表明,考虑到所有测试的策略,针对商品需求的覆盖策略可带来最高质量的解决方案和最快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号