首页> 外文期刊>Computers & operations research >Soft clustering-based scenario bundling for a progressive hedging heuristic in stochastic service network design
【24h】

Soft clustering-based scenario bundling for a progressive hedging heuristic in stochastic service network design

机译:基于软聚类的情景捆绑,用于随机服务网络设计中的渐进式套期动力启发式

获取原文
获取原文并翻译 | 示例

摘要

We present a method for bundling scenarios in a progressive hedging heuristic (PHH) applied to stochastic service network design, where the uncertain demand is represented by a finite number of scenarios. Given the number of scenario bundles, we first calculate a vector of probabilities for every scenario, which measures the association strength of a scenario to each bundle center. This membership score calculation is based on existing soft clustering algorithms such as Fuzzy C-Means (FCM) and Gaussian Mixture Models (GMM). After obtaining the probabilistic membership scores, we propose a strategy to determine the scenario-to-bundle assignment. By contrast, almost all existing scenario bundling methods such as K-Means (KM) assume before the scenario-to-bundle assignment that a scenario belongs to exactly one bundle, which is equivalent to requiring that the membership scores are Boolean values. The probabilistic membership scores bring many advantages over Boolean ones, such as the flexibility to create various degrees of overlap between scenario bundles and the capability to accommodate scenario bundles with different covariance structures. We empirically study the impacts of different degrees of overlap and covariance structures on PHH performance by comparing PHH based on FCM/GMM with that based on KM and the cover method, which represents the state-of-the-art scenario bundling algorithm for stochastic network design. The solution quality is measured against the lower bound provided by CPLEX. The experimental results show that, GMM-based PHH yields the best performance among all methods considered, achieving nearly equivalent solution quality in a fraction of the run-time of the other methods. ? 2020 Elsevier Ltd. All rights reserved.
机译:我们在应用于随机服务网络设计的逐步疏水启发式(PHH)中介绍了一种捆绑方案的方法,其中不确定的需求由有限数量的场景表示。鉴于场景捆绑的数量,我们首先计算每个场景的概率向量,这可以测量每个捆绑中心的场景的关联强度。该隶属计数计算基于现有的软群算法,例如模糊C-Means(FCM)和高斯混合模型(GMM)。在获得概率隶属度分数后,我们提出了一种确定情景到捆绑分配的策略。相比之下,几乎所有现有的场景捆绑方法,如k-means(km)之前假设场景到捆绑分配,所以方案属于恰好一个捆绑包,其等同于要求隶属度分数是布尔值。概率隶属度分数具有与布尔的许多优势带来了许多优势,例如在场景包之间创建各种重叠程度的灵活性以及容纳不同协方差结构的情景捆绑。我们通过基于KM和封面方法对基于FCM / GMM的比较PHH来统一地研究不同程度的重叠和协方差结构对PHH性能的影响,这代表了随机网络的最先进的情景捆绑算法设计。溶液质量以CPLEX提供的下限测量。实验结果表明,基于GMM的PHH在考虑的所有方法中产生了最佳性能,在其他方法的运行时间的一小部分中实现了几乎等同的解决方案质量。还是2020 Elsevier Ltd.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号