首页> 外文期刊>Computers & operations research >A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-Ⅱ with tuned parameters
【24h】

A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-Ⅱ with tuned parameters

机译:供应商管理中的混合供应商管理库存和冗余分配优化问题:带有调整参数的NSGA-Ⅱ

获取原文
获取原文并翻译 | 示例

摘要

In this research, a bi-objective vendor managed inventory model in a supply chain with one vendor (producer) and several retailers is developed, in which determination of the optimal numbers of different machines that work in series to produce a single item is considered. While the demand rates of the retailers are deterministic and known, the constraints are the total budget, required storage space, vendor's total replenishment frequencies, and average inventory. In addition to production and holding costs of the vendor along with the ordering and holding costs of the retailers, the transportation cost of delivering the item to the retailers is also considered in the total chain cost. The aim is to find the order size, the replenishment frequency of the retailers, the optimal traveling tour from the vendor to retailers, and the number of machines so as the total chain cost is minimized while the system reliability of producing the item is maximized. Since the developed model of the problem is NP-hard, the multi-objective meta-heuristic optimization algorithm of non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) is proposed to solve the problem. Besides, since no benchmark is available in the literature to verify and validate the results obtained, a non-dominated ranking genetic algorithm (NRGA) is suggested to solve the problem as well The parameters of both algorithms are first calibrated using the Taguchi approach. Then, the performances of the two algorithms are compared in terms of some multi-objective performance measures. Moreover, a local searcher, named simulated annealing (SA), is used to improve NSGA-Ⅱ. For further validation, the Pareto fronts are compared to lower and upper bounds obtained using a genetic algorithm employed to solve two single-objective problems separately.
机译:在这项研究中,开发了一个具有一个卖方(生产者)和几个零售商的供应链中的双目标卖方管理的库存模型,其中考虑了确定可串联生产单个物品的不同机器的最佳数量。尽管零售商的需求率是确定的且已知的,但约束条件是总预算,所需的存储空间,供应商的总补货频率和平均库存。除了卖方的生产和持有成本以及零售商的订购和持有成本外,将商品交付给零售商的运输成本也考虑在总连锁成本中。目的是找到订单大小,零售商的补货频率,从卖方到零售商的最佳旅行行程以及机器数量,以使总链成本最小化,同时使生产商品的系统可靠性最大化。由于该问题的发展模型是NP难的,提出了非支配排序遗传算法Ⅱ的多目标元启发式优化算法(NSGA-Ⅱ)。此外,由于文献中没有基准可用来验证和验证所获得的结果,因此建议使用非支配的排序遗传算法(NRGA)来解决该问题。这两种算法的参数都首先使用Taguchi方法进行校准。然后,根据一些多目标性能指标比较了两种算法的性能。此外,使用局部搜索器(称为模拟退火(SA))来改进NSGA-Ⅱ。为了进一步验证,将帕累托前沿与使用遗传算法分别解决两个单目标问题获得的上下边界进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号