首页> 外文期刊>Computers & operations research >Commitment and dispatch of heat and power units via affinely adjustable robust optimization
【24h】

Commitment and dispatch of heat and power units via affinely adjustable robust optimization

机译:通过仿射可调整的鲁棒优化实现热电单元的承诺和调度

获取原文
获取原文并翻译 | 示例

摘要

The joint management of heat and power systems is believed to be key to the integration of renewables into energy systems with a large penetration of district heating. Determining the day-ahead unit commitment and production schedules for these systems is an optimization problem subject to uncertainty stemming from the unpredictability of demand and prices for heat and electricity. Furthermore, owing to the dynamic features of production and heat storage units as well as to the length and granularity of the optimization horizon (e.g., one whole day with hourly resolution), this problem is in essence a multi-stage one. We propose a formulation based on robust optimization where recourse decisions are approximated as linear or piecewise-linear functions of the uncertain parameters. This approach allows for a rigorous modeling of the uncertainty in multi-stage decision-making without compromising computational tractability. We perform an extensive numerical study based on data from the Copenhagen area in Denmark, which highlights important features of the proposed model. Firstly, we illustrate commitment and dispatch choices that increase conservativeness in the robust optimization approach. Secondly, we appraise the gain obtained by switching from linear to piecewise-linear decision rules within robust optimization. Furthermore, we give directions for selecting the parameters defining the uncertainty set (size, budget) and assess the resulting trade-off between average profit and conservativeness of the solution. Finally, we perform a thorough comparison with competing models based on deterministic optimization and stochastic programming. (C) 2016 Elsevier Ltd. All rights reserved.
机译:人们认为,热力和动力系统的联合管理对于将可再生能源整合到具有广泛区域供热功能的能源系统中至关重要。确定这些系统的日前机组投入量和生产计划是一个优化问题,受制于需求和热电价格的不可预测性带来的不确定性。此外,由于生产和储热单元的动态特性以及优化范围的长度和粒度(例如,一整天的时间分辨率,这一问题)实质上是一个多阶段的问题。我们提出了一种基于鲁棒优化的公式,其中求助决策近似为不确定参数的线性或分段线性函数。这种方法可以在不影响计算可处理性的情况下,对多阶段决策中的不确定性进行严格建模。我们根据丹麦哥本哈根地区的数据进行了广泛的数值研究,突出了所提出模型的重要特征。首先,我们说明了在稳健的优化方法中增加保守性的承诺和调度选择。其次,我们评估了在鲁棒优化中从线性决策规则切换为分段线性决策规则所获得的增益。此外,我们为选择定义不确定性集(大小,预算)的参数提供了指导,并评估了平均利润与解决方案保守性之间的权衡取舍。最后,我们与基于确定性优化和随机规划的竞争模型进行了全面比较。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号