首页> 外文期刊>Computers & operations research >Efficiently enumerating all maximal cliques with bit-parallelism
【24h】

Efficiently enumerating all maximal cliques with bit-parallelism

机译:通过位并行有效地枚举所有最大派系

获取原文
获取原文并翻译 | 示例

摘要

The maximal clique enumeration (MCE) problem has numerous applications in biology, chemistry, sociology, and graph modeling. Though this problem is well studied, most current research focuses on finding solutions in large sparse graphs or very dense graphs, while sacrificing efficiency on the most difficult medium-density benchmark instances that are representative of data sets often encountered in practice. We show that techniques that have been successfully applied to the maximum clique problem give significant speed gains over the state-of-the-art MCE algorithms on these instances. Specifically, we show that a simple greedy pivot selection based on a fixed maximum-degree first ordering of vertices, when combined with bit-parallelism, performs consistently better than the theoretical worst-case optimal pivoting of the state-of-the-art algorithms of Tomita et al. [Theoretical Computer Science, 2006] and Naude [Theoretical Computer Science, 2016].
机译:最大集团枚举(MCE)问题在生物学,化学,社会学和图形建模中具有许多应用。尽管对此问题进行了很好的研究,但大多数当前的研究重点是在大型稀疏图或非常稠密的图中查找解决方案,同时牺牲了最困难的中等密度基准实例的效率,这些实例代表了实践中经常遇到的数据集。我们证明,已成功应用于最大团簇问题的技术比这些实例上的最新MCE算法具有显着的速度提升。具体而言,我们表明,基于固定的最大顶点顶点一阶顺序的简单贪婪枢轴选择与位并行性相结合,其性能始终比最新算法的理论最坏情况最优枢轴更好Tomita等人的论文。 [理论计算机科学,2006年]和Naude [理论计算机科学,2016年]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号