首页> 外文期刊>Parallel Computing >A memory efficient maximal clique enumeration method for sparse graphs with a parallel implementation
【24h】

A memory efficient maximal clique enumeration method for sparse graphs with a parallel implementation

机译:具有并行实现的稀疏图的记忆有效的最大Clique枚举方法

获取原文
获取原文并翻译 | 示例

摘要

Maximal clique enumeration (MCE) is a widely studied problem that plays a crucial role in structure mining of undirected graphs. The increasing scale of real-world graphs has brought the challenges of high memory cost and high CPU workload to the problem. In this paper, we propose a memory efficient method named CMC-bit for MCE on sparse graphs. It reduces the memory cost via minimizing the candidate cliques and representing them by the data structure bitset. It generates an appropriate order for the vertex set according to two optimized principles to reduce the CPU cost. We further design a partition-based CMC-bit algorithm with a one-side extending strategy to solve the memory-limited problem. We parallelize the CMC-bit algorithm based on MapReduce with a range-based partition strategy to make an optimal trade-off between the shuffling workload of graph decomposition and load balance in the Reduce phase. We conduct extensive experiments on 30 real-world datasets. The results demonstrate that both the CMC-bit algorithm and its parallel implementation significantly outperform the respective state-of-the-art algorithms in speed. We also show that the parallel CMC-bit algorithm achieves good performance on the scalability with respect to both the reducer number and the CPU number. (C) 2019 Elsevier B.V. All rights reserved.
机译:最大集团枚举(MCE)是一个广泛研究的问题,在结构挖掘下发挥着至关重要的作用。现实世界的越来越大的规模带来了高记忆成本和高CPU工作量的挑战。在本文中,我们提出了一种在稀疏图上为MCE命名的CMC位的记忆有效方法。它通过最小化候选群体并由数据结构Bitset表示它们来降低记忆成本。它根据两个优化原则为顶点设置的适当顺序以降低CPU成本。我们进一步设计了一种基于分区的CMC比特算法,具有一侧延伸策略来解决内存限制问题。我们将基于MapReduce与基于范围的分区策略并行化CMC位算法,以在减少阶段的绘图分解和负载平衡之间进行最佳折衷。我们对30个现实世界数据集进行了广泛的实验。结果表明,CMC比特算法及其并行实现都显着优于速度的各个最先进的算法。我们还表明,并行CMC位算法对减速器号和CPU编号的可伸缩性达到了良好的性能。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号