首页> 外文期刊>Computers & mathematics with applications >A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
【24h】

A Galerkin formulation of the MIB method for three dimensional elliptic interface problems

机译:三维椭圆界面问题的MIB方法的Galerkin公式

获取原文
获取原文并翻译 | 示例

摘要

We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multipro-tein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C~1 continuous or H~2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting.
机译:我们开发了匹配界面和边界(MIB)方法的三维(3D)Galerkin公式,用于求解具有不连续系数的椭圆偏微分方程(PDE),即椭圆界面问题。本方法分别在两个都包括接口的扩展子域上建立了两组元素。结果,两组元素在界面附近相互重叠。在元素的重叠部分定义了虚拟解决方案,因此可以像对待没有接口一样将原始PDE的微分操作离散化。多项式基函数的额外系数是由界面跳变条件决定的,这些系数提供重叠的元素并求解虚拟的解。因此,在接口上严格执行了接口跳转条件。本方法利用笛卡尔网格避免常规有限元方法(FEM)中的网格生成。我们用三个不同的元素(即直角棱镜元素,五个四面体元素和六个四面体元素)实现提出的MIB Galerkin方法,这些元素在不引入任何新节点的情况下平铺笛卡尔网格。所提出的3D MIB Galerkin的准确性,稳定性和鲁棒性已在三种类型的椭圆界面问题上得到了广泛验证。在第一种类型中,接口是由级别集函数分析定义的。这些界面相对简单,但是允许几何奇异。在第二种类型中,界面由蛋白质表面定义,而蛋白质表面实际上是任意复杂的。界面的最后一种类型源自多蛋白复合物,例如分子马达。对于所有这些问题,已经确认了接近二阶的精度。据我们所知,这是有限元法首次在具有逼真的蛋白质表面的泊松方程求解中显示出接近二阶的收敛性。此外,本工作为与3D设置中的Lipschitz连续界面相关的C〜1连续或H〜2连续解提供了第一种已知的接近二阶准确的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号