首页> 外文期刊>Computers & mathematics with applications >On R-linear convergence of semi-monotonic inexact augmented Lagrangians for bound and equality constrained quadratic programming problems with application
【24h】

On R-linear convergence of semi-monotonic inexact augmented Lagrangians for bound and equality constrained quadratic programming problems with application

机译:半单调不精确增广拉格朗日方程的R-线性收敛性,用于有界和等式约束二次规划问题及其应用

获取原文
获取原文并翻译 | 示例

摘要

New convergence results for a variant of the inexact augmented Lagrangian algorithm SMALBE [Z. Dostal, An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum, Computing 78 (2006) 311-328| for the solution of strictly convex bound and equality constrained quadratic programming problems are presented. The algorithm SMALBE-M presented here uses a fixed regularization parameter and controls the precision of the solution of auxiliary bound constrained problems by a multiple of the norm of violation of the equality constraints and a constant which is updated in order to enforce the increase of Lagrangian function. A nice feature of SMALBE-M is its capability to find an approximate solution of important classes of problems in a number of iterations that is independent of the conditioning of the equality constraints. Here we prove the R-Iinear rate of convergence of the outer loop of SMALBE-M for any positive regularization parameter after the strong active constraints of the solution are identified. The theoretical results are illustrated by solving two benchmarks, including the contact problem of elasticity discretized by two million of nodal variables. The numerical experiments indicate that the inexact solution of auxiliary problems in the inner loop results in a very small increase of the number of outer iterations as compared with the exact algorithm. The results do not assume independent equality constraints and remain valid when the solution is dual degenerate.
机译:不精确的增强拉格朗日算法SMALBE [Z. Dostal,带界谱的有界和等式约束二次规划问题的最佳算法,计算78(2006)311-328 |提出了严格凸边界和等式约束的二次规划问题的求解方法。此处提出的算法SMALBE-M使用固定的正则化参数,并通过违反等式约束的范数和常数的倍数来控制辅助界约束问题的解的精度,并对其进行更新以强制执行Lagrangian的增加功能。 SMALBE-M的一个不错的功能是能够在许多迭代中找到重要问题类别的近似解,而与等式约束的条件无关。在这里,我们证明了在确定了解决方案的强有效约束之后,对于任何正则化参数,SMALBE-M外环的R线性收敛速度。通过解决两个基准来说明理论结果,其中包括由两百万个节点变量离散化的弹性接触问题。数值实验表明,与精确算法相比,内循环中辅助问题的不精确求解导致外迭代次数的增加非常小。结果不假设独立的等式约束,并且在解为双重退化时仍然有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号