首页> 外文期刊>Computers & mathematics with applications >A posteriori error control of hp-finite elements for variational inequalities of the first and second kind
【24h】

A posteriori error control of hp-finite elements for variational inequalities of the first and second kind

机译:第一和第二类变分不等式的hp有限元的后验误差控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, residual-based a posteriori error estimates for variational inequalities, including those of the second kind, are proposed. The variational formulation and its discretizations are considered in an abstract framework of general Banach spaces. The main idea is to express the residual in terms of some Lagrange multipliers which can be obtained, for instance, by some post-processing. The residual itself is defined for an arbitrary element of the trial space. The error of this element and of the solution of the variational inequality is then estimated by the dual norm of the residual plus some computable remainder terms. This concept is applied to a variety of (frictional) contact problems, such as Signorini and obstacle problems as well as to the Bingham fluid problem. The applicability of the estimates is confirmed by several numerical experiments. In particular, the general framework allows for the discretization with hp-adaptivity which leads to nearly exponential convergence rates in most cases. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,提出了基于残差的后验误差估计变量不等式,包括第二种。在一般Banach空间的抽象框架中考虑了变分公式及其离散化。主要思想是用一些拉格朗日乘数来表示残差,该乘数可以通过例如一些后处理来获得。残差本身是为试用空间的任意元素定义的。然后通过残差加上一些可计算的余项的对偶范数来估计该元素和变分不等式解的误差。此概念适用于各种(摩擦)接触问题,例如Signorini和障碍问题以及Bingham流体问题。几个数值实验证实了估计的适用性。特别是,通用框架允许通过hp自适应离散化,这在大多数情况下会导致接近指数的收敛速度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号