首页> 外文期刊>Computers & mathematics with applications >A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods
【24h】

A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods

机译:hp有限元对混合和混合混合方法的后验误差控制和适应性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, mixed and mixed-hybrid methods for h- and hp-adaptive finite elements on quadrilateral meshes are discussed for variational equations and, in particular, for variational inequalities. The main result is the derivation of reliable error estimates for mixed methods for the obstacle problem. The estimates rely on the use of a post-processing of the potential in H-1 and on the introduction of a certain Lagrange multiplier which is associated with the obstacle constraints. The error estimates consist of the dual norm of the residual, which is defined by an appropriate approximation of the Lagrange multiplier, plus some computable remainder terms. In numerical experiments, the applicability of the post processing procedure on quadrilateral meshes with multilevel hanging-nodes is verified and the use of the estimates in h- and hp-adaptive schemes is demonstrated by means of convergence rates and effectivity indices. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,讨论了四边形网格上h和hp有限元的混合和混合混合方法的变分方程,尤其是变分不等式。主要结果是为障碍问题的混合方法得出可靠的误差估计。估算依赖于对H-1势的后处理的使用以及与障碍物约束有关的某个拉格朗日乘数的引入。误差估计包括残差的对偶范数,该对偶范数由拉格朗日乘数的适当近似以及一些可计算的余项来定义。在数值实验中,验证了后处理程序在具有多级悬挂节点的四边形网格上的适用性,并通过收敛速度和有效性指标证明了在h和hp自适应方案中的估计值的使用。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号