首页> 外文期刊>Computers & mathematics with applications >Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices
【24h】

Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices

机译:非正交结构格子中地下水流动的格子Boltzmann方法

获取原文
获取原文并翻译 | 示例

摘要

The efficiency of the lattice Boltzmann method (LBM) in modeling isotropic groundwater flow in domains of arbitrary geometry has been investigated. The Poisson equation was transformed in general curvilinear coordinates. The corresponding equilibrium function for the D2Q9 square lattice based on metric function between the physical and the computational domain has been established. The resulting LBM was checked on examples having higher generality; flows in confined and unconfined aquifers, in vertical and horizontal plane have been considered. In addition, the phreatic water table representing upper boundary in the vertical plane was determined by the dynamic a-stretching approach, not requiring complex concepts for dealing with the free surface (like the volume of fluid method). The accuracy and stability of the model is controlled by the adaptive mesh concept. This allows application of higher density grid in critical areas with high pressure and velocity gradients, and vice versa. The number of computation points is significantly reduced without loosing accuracy. The basic characteristics of the LBM including features like parallelization and simplicity, are maintained. The advantages of the proposed curvilinear LBM in modeling groundwater flow in domains of complex shape over the former published methods is demonstrated by three examples. (C) 2015 Elsevier Ltd. All rights reserved.
机译:研究了格子Boltzmann方法(LBM)在模拟任意几何区域内各向同性地下水流中的效率。将泊松方程转换为一般曲线坐标。已经建立了基于物理域和计算域之间的度量函数的D2Q9方格的相应平衡函数。在具有更高通用性的示例中检查了生成的LBM;已经考虑了在垂直和水平平面内的承压和非承压含水层中的流动。此外,通过动态a拉伸方法确定了代表垂直平面上边界的潜水位,不需要复杂的概念来处理自由表面(如流体体积法)。模型的准确性和稳定性由自适应网格概念控制。这允许在具有较高压力和速度梯度的关键区域中应用更高密度的网格,反之亦然。计算点的数量大大减少而不会降低精度。维护LBM的基本特征,包括并行性和简单性。通过三个实例证明了所提出的曲线LBM在建模复杂形状区域的地下水流方面的优势,优于以前发表的方法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号