首页> 外文期刊>Computers & mathematics with applications >Mixed stabilized finite element methods based on backward difference/Adams-Bashforth scheme for the time-dependent variable density incompressible flows
【24h】

Mixed stabilized finite element methods based on backward difference/Adams-Bashforth scheme for the time-dependent variable density incompressible flows

机译:基于时差变密度不可压缩流的基于后向差分/ Adams-Bashforth格式的混合稳定有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider a second-order mixed stabilized finite element method based on pressure projection method for variable density incompressible flows. The originality of the proposed approach is to use a stabilized method based on the difference between a consistent and an under-integrated mass matrix of the pressure for variable density incompressible flows approximated by the lowest equal-order finite element pairs. A second-order backward difference (BDF) for the temporal term and a second-order Adams-Bashforth (AB) for the explicit treatment of the nonlinear term lead to the presented second-order BDF/AB scheme. The stability of the method was proved and the performance of the method is numerically illustrated. Finally, comparison with some established methods, a series of numerical experiments are given to show that this method has better stability and accuracy. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文考虑了基于压力投影法的变密度不可压缩流的二阶混合稳定有限元方法。所提出的方法的独创性是基于最小均等阶有限元对逼近的可变密度不可压缩流的压力的一致矩阵和积分不足的质量矩阵之间的差异,使用稳定化方法。时间项的二阶后向差分(BDF)和非线性项的显式处理的二阶Adams-Bashforth(AB)导致了提出的二阶BDF / AB方案。证明了该方法的稳定性,并数值说明了该方法的性能。最后,通过与已有方法的比较,给出了一系列数值实验,表明该方法具有较好的稳定性和准确性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号