首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Segregated Runge Kutta time integration of convection-stabilized mixed finite element schemes for wall-unresolved LES of incompressible flows
【24h】

Segregated Runge Kutta time integration of convection-stabilized mixed finite element schemes for wall-unresolved LES of incompressible flows

机译:对流不可解LES的对流稳定混合有限元格式的孤立Runge Kutta时间积分

获取原文
获取原文并翻译 | 示例

摘要

In this work, we develop a high-performance numerical framework for the large eddy simulation (LES) of incompressible flows. The spatial discretization of the nonlinear system is carried out using mixed finite element (FE) schemes supplemented with symmetric projection stabilization of the convective term and a penalty term for the divergence constraint. These additional terms introduced at the discrete level have been proved to act as implicit LES models. In order to perform meaningful wall-unresolved simulations, we consider a weak imposition of the boundary conditions using a Nitsche's-type scheme, where the tangential component penalty term is designed to act as a wall law. Next, segregated Runge Kutta (SRK) schemes (recently proposed by the authors for laminar flow problems) are applied to the LES simulation of turbulent flows. By the introduction of a penalty term on the trace of the acceleration, these methods exhibit excellent stability properties for both implicit and explicit treatment of the convective terms. SRK schemes are excellent for large-scale simulations, since they reduce the computational cost of the linear system solves by splitting velocity and pressure computations at the time integration level, leading to two uncoupled systems. The pressure system is a Darcy-type problem that can easily be preconditioned using a traditional block-preconditioning scheme that only requires a Poisson solver. At the end, only coercive systems have to be solved, which can be effectively preconditioned by multilevel domain decomposition schemes, which are both optimal and scalable. The framework is applied to the Taylor Green and turbulent channel flow benchmarks in order to prove the accuracy of the convection-stabilized mixed FEs as LES models and SRK time integrators. The scalability of the preconditioning techniques (in space only) has also been proven for one step of the SRK scheme for the Taylor Green flow using uniform meshes. Moreover, a turbulent flow around a NACA profile is solved to show the applicability of the proposed algorithms for a realistic problem. (C) 2016 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们为不可压缩流的大涡模拟(LES)开发了一个高性能的数值框架。非线性系统的空间离散化是使用混合有限元(FE)方案进行补充的,该方案补充了对流项和散度约束的惩罚项的对称投影稳定性。在离散级别引入的这些附加术语已被证明可以充当隐式LES模型。为了执行有意义的墙未解析模拟,我们考虑使用Nitsche's型方案对边界条件施加弱势,其中切向分量罚分项被设计为墙律。接下来,将隔离的Runge Kutta(SRK)方案(作者最近提出的层流问题)应用于湍流的LES模拟中。通过在加速度的轨迹上引入惩罚项,这些方法对于对流项的隐式和显式处理均显示出出色的稳定性。 SRK方案非常适合大规模仿真,因为它们降低了线性系统的计算成本,方法是在时间积分级别拆分速度和压力计算,从而得到两个未耦合的系统。压力系统是达西类型的问题,可以使用仅需要泊松求解器的传统块预处理方案轻松进行预处理。最后,仅需解决强制系统,可以通过最佳且可伸缩的多级域分解方案有效地对其进行预处理。该框架应用于泰勒格林和湍流通道基准,以证明对流稳定的混合有限元作为LES模型和SRK时间积分器的准确性。预处理技术的可扩展性(仅在空间中)也已针对采用统一网格的泰勒格林流的SRK方案的一步得到了证明。此外,解决了绕NACA轮廓的湍流问题,以显示所提出算法对实际问题的适用性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号