首页> 外文期刊>Computers & mathematics with applications >A new unfitted stabilized Nitsche's finite element method for Stokes interface problems
【24h】

A new unfitted stabilized Nitsche's finite element method for Stokes interface problems

机译:Stokes界面问题的新的不拟合稳定Nitsche有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce and analyze a new stabilized finite element method based on combining Nitsche's method with a ghost penalty method for two-phase Stokes flows involving two different kinematic viscosities by using the lowest equal order velocity-pressure pairs. The interface between two-phase flows does not need to align with the mesh and interface conditions are imposed weakly using a Nitsche type approach. This method has some prominent features: parameter-free, avoiding calculation of higher order derivatives or edge data structures and stabilization being completely local behavior about pressure. We prove that the method is inf-sup stable and obtain optimal order a priori error estimates. We also show that the estimate for the condition number of the stiffness matrix is independent of the location of the interface. Finally, we present some numerical examples to support our theoretical results. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们引入并分析了一种新的稳定有限元方法,该方法基于Nitsche方法与重影罚法相结合,通过使用最低等阶速度-压力对来解决涉及两个不同运动粘度的两相斯托克斯流。两相流之间的界面不需要与网格对齐,并且使用Nitsche类型方法对界面条件施加了微弱的作用。该方法具有一些突出的特征:无参数,避免计算高阶导数或边数据结构,并且稳定化完全是关于压力的局部行为。我们证明了该方法是稳定的,并获得了先验误差估计的最优阶。我们还表明,刚度矩阵条件数的估计与界面的位置无关。最后,我们提供一些数值示例来支持我们的理论结果。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号