首页> 外文期刊>Computers & mathematics with applications >An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneous jump conditions
【24h】

An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneous jump conditions

机译:具有不连续系数和非均匀跳变条件的二维PDE的浸入式有限体积元方法

获取原文
获取原文并翻译 | 示例

摘要

An immersed finite volume element method is developed to solve 2D elliptic interface problems with a variable coefficient that has a finite jump across an interface. The solution and the flux may also have a finite jump across the interface. Using the source removal technique, an equivalent elliptic interface problem with homogeneous jump conditions is obtained. The nodal basis functions are constructed to satisfy the homogeneous jump conditions near the interface and the usual finite element nodal basis functions are applied away from the interface. The resulting linear problem is simple and easy to solve. A proof of the error estimate in the energy norm is given. Numerical experiments demonstrate the convergence rates of the proposed method with the usual O(h(2)) in the L-2, the L-infinity norms, and O(h) in the H-1 norm. (C) 2015 Elsevier Ltd. All rights reserved.
机译:开发了一种浸入式有限体积元方法来解决具有可变系数的二维椭圆界面问题,该系数在界面上具有有限的跳变。解和通量也可能在界面上有一个有限的跳跃。使用源去除技术,可以获得具有均匀跳跃条件的等效椭圆界面问题。节点基函数被构造为满足界面附近的均匀跳跃条件,并且通常的有限元节点基函数被应用于远离界面的地方。由此产生的线性问题既简单又易于解决。给出了能量范数中误差估计的证明。数值实验证明了该方法在L-2,L-无穷范数和H-1范数为O(h)时的收敛速度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & mathematics with applications》 |2015年第2期|89-103|共15页
  • 作者单位

    Nanjing Normal Univ, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China|Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Peoples R China;

    Nanjing Normal Univ, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China;

    Nanjing Normal Univ, Jiangsu Prov Key Lab Numer Simulat Large Scale Co, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China|N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA|N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Finite volume element method; Source removal technique; Interface problem; Jump conditions;

    机译:有限体积元法;源去除技术;界面问题;跳跃条件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号