首页> 外文期刊>Computers & mathematics with applications >Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation
【24h】

Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation

机译:获得一类非线性矩阵方程正定解的两种类似保结构加倍算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present two structure-preserving-doubling like algorithms for obtaining the positive definite solution of the nonlinear matrix equation X + A(H)(X) over bar (-1) A = Q, where X is an element of C-nxn is an unknown matrix and Q is an element of C-nxn is a Hermitian positive definite matrix. We prove that the sequences generated by the algorithms converge to the positive definite solution of the considered matrix equation R-quadratically. In addition, we also present some numerical results to illustrate the behavior of the considered algorithm. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了两种类似结构保留加倍的算法,用于获得关于(-1)A = Q的非线性矩阵方程X + A(H)(X)的正定解,其中X是C-nxn是未知矩阵,Q是C-nxn的元素,是厄米正定矩阵。我们证明了算法生成的序列二次收敛于所考虑矩阵方程R的正定解。此外,我们还提供了一些数值结果来说明所考虑算法的行为。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号