首页> 外文期刊>Computers & mathematics with applications >Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid
【24h】

Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid

机译:多项时间分数阶微分方程的解析解及其在广义粘弹性流体非定常流动中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper derives analytical solutions for a class of new multi-term fractional-order partial differential equations, which include the terms for spatial diffusion, time-fractional diffusion (multi-term) and reaction. These models can be used to describe the nonlinear relationship between the shear stress and shear rate of generalized viscoelastic Oldroyd-B fluid and Burgers fluid. By using a modified separation of variables method, the governing fractional-order partial differential equations are transformed into a set of fractional-order ordinary differential equations. Mikusiriski-type operational calculus is then employed to obtain the exact solutions of the linear fractional ordinary differential equations with constant coefficients. The solutions are expressed in terms of multivariate Mittag-Leffler functions. Different situations for the unsteady flows of generalized Oldroyd-B fluid and Burgers fluid due to a moving plate are considered via examples. Integral representations of the solutions are presented. It is shown that the presented results reduce to the corresponding results for classical Navier Stokes, Oldroyd-B, Maxwell and second-grade fluids as special cases. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文推导了一类新的多项式分数阶偏微分方程的解析解,其中包括空间扩散,时间分数扩散(多项式)和反应项。这些模型可用于描述广义粘弹性Oldroyd-B流体和Burgers流体的剪切应力与剪切速率之间的非线性关系。通过使用改进的变量分离方法,将控制的分数阶偏微分方程转换为一组分数阶常微分方程。然后,使用Mikusiriski型运算演算来获得具有恒定系数的线性分数阶常微分方程的精确解。这些解决方案以多元Mittag-Leffler函数表示。通过示例考虑了由于运动板而引起的广义Oldroyd-B流体和Burgers流体不稳定流动的不同情况。提出了解决方案的整体表示。结果表明,在特殊情况下,给出的结果简化为经典Navier Stokes,Oldroyd-B,Maxwell和二级流体的相应结果。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号