首页> 外文期刊>Computers & mathematics with applications >Accurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems
【24h】

Accurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems

机译:对称三对角矩阵特征问题的精确多项式求根方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider the application of polynomial root-finding methods to the solution of the tridiagonal matrix eigenproblem. All considered solvers are based on evaluating the Newton correction. We show that the use of scaled three-term recurrence relations complemented with error free transformations yields some compensated schemes which significantly improve the accuracy of computed results at a modest increase in computational cost. Numerical experiments illustrate that under some restriction on the conditioning the novel iterations can approximate and/or refine the eigenvalues of a tridiagonal matrix with high relative accuracy. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本文中,我们考虑了多项式求根方法在三对角矩阵特征问题求解中的应用。所有考虑的求解器均基于牛顿校正的评估。我们表明,使用定标的三项递归关系与无差错变换相辅相成,可以产生一些补偿方案,从而显着提高计算结果的准确性,而计算成本却会适度增加。数值实验表明,在条件的某些限制下,新颖的迭代可以以较高的相对精度近似和/或细化三对角矩阵的特征值。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号