首页> 外文期刊>Computers & mathematics with applications >A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems
【24h】

A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems

机译:评估插值和搭配问题的高斯径向基函数解的一种稳定方法

获取原文
获取原文并翻译 | 示例

摘要

Radial basis functions (RBFs) are a powerful tool for approximating the solution of high dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. The best accuracy can often be achieved when the so-called shape parameter of the basis functions is small, which in turn tends to make the interpolation matrix increasingly ill-conditioned. To overcome such instability in the numerical method, which arises for even the most stable problems, one needs to stabilize the method. In this paper we present a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion for Gaussian RBFs. This work enhances the ideas proposed in Fasshauer and McCourt (2012), by exploiting the properties of the orthogonal eigenfunctions and their zeros. We develop our approach in one and two-dimensional spaces, with the extension to higher dimensions proceeding analogously. In the univariate setting the orthogonality of the eigenfunctions and our special collocation locations give rise to easily computable cardinal basis functions. The accuracy, robustness and computational efficiency of the method are tested by numerically solving several interpolation and boundary value problems in one and two dimensions. High accuracy, simple implementation and low complexity for high-dimensional problems are the advantages of our approach. On the down side, our method is currently limited to the use of tensor products of unevenly spaced one-dimensional data locations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:径向基函数(RBF)是用于逼近高维问题的强大工具。它们通常被称为无网格方法,并且在光谱上可能是准确的。当所谓的基函数的形状参数小时,通常可以达到最佳精度,这反过来又使插值矩阵变得越来越不适。为了克服数值方法中的这种不稳定性,这种不稳定性甚至是最稳定的问题所引起的,还需要使该方法稳定。在本文中,我们提出了一种基于高斯RBFs特征函数展开的稳定高斯径向基函数插值评估的新方法。通过利用正交特征函数及其零的性质,这项工作增强了Fasshauer和McCourt(2012)中提出的思想。我们在一维和二维空间中发展我们的方法,对高维的扩展类似地进行。在单变量设置中,本征函数的正交性和我们特殊的搭配位置产生了易于计算的基数基函数。通过数值求解一维和二维数个插值和边值问题,测试了该方法的准确性,鲁棒性和计算效率。对于高维问题,高精度,简单实现和低复杂度是我们方法的优势。不利的一面是,我们的方法目前仅限于使用不均匀间隔的一维数据位置的张量积。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号