首页> 外文期刊>Computers & mathematics with applications >A finite element method for computing accurate solutions for Poisson equations with corner singularities using the stress intensity factor
【24h】

A finite element method for computing accurate solutions for Poisson equations with corner singularities using the stress intensity factor

机译:利用应力强度因子计算具有角奇异性的Poisson方程的精确解的有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this article, we consider the Poisson equation with homogeneous Dirichlet boundary conditions, on a polygonal domain with one reentrant corner. The solution of the Poisson equation with a concave corner yields a singular decomposition, u = w + lambda eta s, where w is regular, s is a singular function, and the coefficient R is the so called stress intensity factor. This stress intensity factor can be computed using the extraction formula. We introduce a new non-homogeneous boundary value problem, which has 'zero' stress intensity factor. Using the solution of this new partial differential equation, we can compute an accurate solution of the original problem, simply by adding singular part. We obtain an optimal convergence rate with smaller errors when compared with others. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们考虑具有一个凹角的多边形区域上具有齐次Dirichlet边界条件的Poisson方程。具有凹角的泊松方程的解产生奇异分解,u = w + lambda eta s,其中w是规则的,s是奇异函数,系数R是所谓的应力强度因子。可以使用提取公式来计算此应力强度因子。我们介绍了一个新的非齐次边值问题,其应力强度因子为“零”。使用这个新的偏微分方程的解,我们可以简单地通过添加奇异部分来计算原始问题的精确解。与其他相比,我们获得了具有较小误差的最佳收敛速度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号