首页> 外文学位 >Mathematical modeling and validation of stress-intensity factor solutions for cracks emanating from countersunk holes using finite elements.
【24h】

Mathematical modeling and validation of stress-intensity factor solutions for cracks emanating from countersunk holes using finite elements.

机译:使用有限元对埋头孔产生的裂纹进行应力强度因子解的数学建模和验证。

获取原文
获取原文并翻译 | 示例

摘要

Cyclic load bearing structures are very susceptible to fatigue damage, which may lead to the catastrophic failure of structures over time. Metallic structures such as those used in aircraft are particularly vulnerable to this type of damage. As aircraft fleets around the world age and operate well beyond their original design life, it is becoming increasingly important to implement damage tolerance analysis methods that can accurately predict the fatigue life for these structures. A significant amount of research has been conducted that focuses on techniques used to model crack growth for a number of different configurations. However, limited amount of research has been conducted to develop an easy-to-implement and validated method for estimating crack growth for cracks growing from a countersunk hole, which is a commonly used structure in aircraft and prone to fatigue issues. This thesis focuses on developing, verifying and validating a solution database method for estimating stress intensity factors (SIFs) and geometry correction factors for common aerospace countersunk hole geometries. The results can easily be used in conjunction with linear elastic fracture mechanics theory to predict fatigue crack growth for countersunk hole geometries with remote tension loading.;Numerical analysis is performed using a finite element analysis that employs higher order elements. The numerical results are validated through a series of constant amplitude and marker band experimental tests then verified by performing a comparison with several published solutions. An error analysis is conducted to investigate errors due to modeling, experimental measurements and KI stress intensity extraction techniques. The effect of adding a countersink to a straight through hole is investigated. Finally, a series of KI stress intensity factors are calculated and a multidimensional interpolation method is presented that can be used to estimate KI stress intensity factors for most common countersunk holes found on aircraft structures.
机译:循环承重结构非常容易受到疲劳破坏,这可能会导致结构随时间发生灾难性破坏。金属结构(例如飞机上使用的金属结构)尤其容易受到此类损坏。随着世界各地机队的老化和运行超出其最初的设计寿命,实施能够精确预测这些结构的疲劳寿命的损伤容限分析方法变得越来越重要。已经进行了大量的研究,重点研究了用于对许多不同构造的裂纹扩展进行建模的技术。然而,已经进行了有限的研究以开发一种容易实现且经过验证的方法,用于估计从埋头孔中生长的裂纹的裂纹扩展,该埋头孔是飞机上的常用结构,容易出现疲劳问题。本文着重于开发,验证和验证用于估计常见航空埋头孔几何形状的应力强度因子(SIF)和几何形状校正因子的解决方案数据库方法。可以轻松地将结果与线性弹性断裂力学理论结合使用,以预测具有远程拉力载荷的埋头孔几何形状的疲劳裂纹扩展。;数值分析是使用有限元分析进行的,该有限元分析采用了高阶元素。数值结果通过一系列恒定振幅和标记带实验测试进行验证,然后通过与几种已发布的解决方案进行比较来进行验证。进行误差分析以调查由于建模,实验测量和KI应力强度提取技术引起的误差。研究了在直通孔中添加埋头孔的效果。最后,计算了一系列的KI应力强度因子,并提出了一种多维插值方法,该方法可用于估计飞机结构上最常见的埋头孔的KI应力强度因子。

著录项

  • 作者

    Cronenberger, Jody O.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号