首页> 外文期刊>Computers & mathematics with applications >A goal-oriented reduced-order modeling approach for nonlinear systems
【24h】

A goal-oriented reduced-order modeling approach for nonlinear systems

机译:面向目标的非线性系统降阶建模方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a novel, goal-oriented reduced-order modeling methodology. The approach uses a low-dimensional basis function set that contains both global and local, goal-oriented basis functions. Compared to reduced-order models using the standard proper orthogonal decomposition (POD) basis, these new goal-oriented POD basis functions lead to better approximations of given quantities of interest (Qol) while maintaining accuracy in the evolution of the state. We demonstrate this approach for two problems involving Burgers equation. In the first problem, the Qol is the spatial average of the solution over various regions. The QoI in the second problem is the feedback control based on a MinMax control design with an extended Kalman filter. In both cases, approximations of the Qol and the state variables are more accurate using the goal-orientated POD than using the standard POD basis with comparable online computational costs. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本文中,我们开发了一种新颖的,面向目标的降阶建模方法。该方法使用一个低维基础函数集,其中包含全局和局部的,面向目标的基础函数。与使用标准的适当正交分解(POD)基础的降阶模型相比,这些新的面向目标的POD基础函数可在保持状态演化精度的同时,更好地逼近给定的感兴趣量(Qol)。我们针对涉及Burgers方程的两个问题展示了这种方法。在第一个问题中,Qol是各个区域上解决方案的空间平均值。第二个问题中的QoI是基于带有扩展卡尔曼滤波器的MinMax控制设计的反馈控制。在这两种情况下,与使用可比较的在线计算成本的标准POD基础相比,使用面向目标的POD的Qol和状态变量的逼近更为准确。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号