首页> 外文期刊>Computers & mathematics with applications >Analysis on inexact block diagonal preconditioners for elliptic PDE-constrained optimization problems
【24h】

Analysis on inexact block diagonal preconditioners for elliptic PDE-constrained optimization problems

机译:椭圆PDE约束优化问题的不精确块对角前置条件分析

获取原文
获取原文并翻译 | 示例

摘要

By using the Galerkin finite element method, the distributed control problems can be discretized into a saddle point problem with a coefficient matrix of block three-by-three, which can be reduced to a linear system with lower order. We first introduce a class of inexact block diagonal preconditioners and estimate the lower and upper bounds of positive and negative eigenvalues of the preconditioned matrices, respectively. Based on the Cholesky decomposition of the known matrices, we also analyze a lower triangular preconditioner to accelerate the minimal residual method for the reduced linear system and discuss its real and complex eigenvalues respectively. Moreover, these bounds do not rely on the regularization parameter and the eigenvalues of the matrices in the discrete system. Numerical experiments are also presented to demonstrate the effectiveness and robustness of the two new preconditioners. (C) 2017 Elsevier Ltd. All rights reserved.
机译:通过使用Galerkin有限元方法,可以将分布控制问题离散化为具有三乘三块系数矩阵的鞍点问题,可以将其简化为低阶线性系统。我们首先介绍一类不精确的块对角前置条件,并分别估计前置条件矩阵的正和负特征值的上下限。在已知矩阵的Cholesky分解的基础上,我们还分析了下三角前置条件,以加速简化线性系统的最小残差方法,并分别讨论其实特征值和复特征值。而且,这些界限不依赖于离散系统中的正则化参数和矩阵的特征值。还进行了数值实验,以证明两种新型预处理器的有效性和鲁棒性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号