首页> 外文期刊>Computers & mathematics with applications >Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme
【24h】

Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme

机译:使用惩罚方法和有限数量计划,以成比例的交易成本和随机波动率对欧式期权定价

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a combination of a penalty method and a finite volume scheme for a four-dimensional time-dependent Hamilton-Jacobi-Bellman (HJB) equation arising from pricing European options with proportional transaction costs and stochastic volatility. The HJB equation is first approximated by a nonlinear partial differential equation containing penalty terms. A finite volume method along with an upwind technique is then developed for the spatial discretization of the nonlinear penalty equation. We show that the coefficient matrix of the discretized system is an M-matrix. An iterative method is proposed for solving the nonlinear algebraic system and a convergence theory is established for the iterative method. Numerical experiments are performed using a non-trivial model pricing problem and the numerical results demonstrate the usefulness of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了惩罚方法和有限体积方案的组合,该方案适用于随时间按比例交易成本和随机波动率对欧洲期权定价而产生的四维时变汉密尔顿-雅各比-贝尔曼(HJB)方程。首先通过包含惩罚项的非线性偏微分方程来近似HJB方程。然后,开发了一种有限体积方法和迎风技术,用于非线性惩罚方程的空间离散化。我们表明离散系统的系数矩阵是一个M矩阵。提出了一种求解非线性代数系统的迭代方法,并建立了收敛性理论。使用非平凡模型定价问题进行了数值实验,数值结果证明了该方法的有效性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号