首页> 外文期刊>Computers & mathematics with applications >Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law
【24h】

Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law

机译:具有非单调摩擦定律的动态双边热粘弹性接触问题的数值分析

获取原文
获取原文并翻译 | 示例

摘要

We study a fully dynamic thermoviscoelastic contact problem. The contact is assumed to be bilateral and frictional, where the friction law is described by a nonmonotone relation between the tangential stress and the tangential velocity. Weak formulation of the problem leads to a system of two evolutionary, possibly nonmonotone subdifferential inclusions of parabolic and hyperbolic type, respectively. We study both semidiscrete and fully discrete approximation schemes, and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the linear element solution. This theoretical result is illustrated numerically. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们研究了完全动态的热粘弹性接触问题。假定接触是双向摩擦的,其中摩擦定律由切向应力和切向速度之间的非单调关系描述。问题的弱公式化导致系统分别具有抛物线型和双曲线型的两个演化,可能是非单调的亚微分包含。我们研究了半离散和完全离散的近似方案,并限制了近似解的误差。在对精确解施加规律性的假设下,针对线性元素解导出了最佳阶数误差估计。用数字说明了这一理论结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号