首页> 外文期刊>Computers & mathematics with applications >A class of modified FR conjugate gradient method and applications to non-negative matrix factorization
【24h】

A class of modified FR conjugate gradient method and applications to non-negative matrix factorization

机译:一类改进的FR共轭梯度法及其在非负矩阵分解中的应用

获取原文
获取原文并翻译 | 示例

摘要

Conjugate gradient method, as an efficient method, is used to solve unconstrained optimization problems. In this paper, we propose a class of modified Fletcher-Reeves conjugate gradient method, with Armijo-type line search, which generates the direction is descent for the objective function. Under mild conditions, we give that the proposed method is descent and globally convergent. Moreover, the method is applied to nonnegative matrix factorization, and the experimental results demonstrate the validity of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
机译:共轭梯度法是一种有效的方法,用于解决无约束的优化问题。本文提出了一种改进的Fletcher-Reeves共轭梯度法,利用Armijo型线搜索方法,该方法生成了目标函数的下降方向。在温和的条件下,我们认为所提出的方法是下降的并且是全局收敛的。此外,将该方法应用于非负矩阵分解,实验结果证明了该方法的有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号