首页> 外文期刊>Computers & mathematics with applications >Regularized variational dynamic stochastic resonance method for enhancement of dark and low-contrast image
【24h】

Regularized variational dynamic stochastic resonance method for enhancement of dark and low-contrast image

机译:增强暗和低对比度图像的正则化变分动态随机共振方法

获取原文
获取原文并翻译 | 示例

摘要

Dynamic stochastic resonance (DSR) is a distinctive technique for enhancement of dark and low-contrast image. Noise is necessary for DSR based image enhancement and the level of noise will be enlarged simultaneously with brightness, which reduces the perceptual quality of the enhanced image greatly and also increases the difficulty of subsequent denoising because removing high level of noise often leads to serious loss of image details. In this paper, instead of removing noise after the enhancement process is complete, we propose to suppress noise gradually and simultaneously in the process of enhancement. We rewrite the traditional partial differential equation (PDE) based DSR model in variational framework firstly, and then propose a novel total variation regularized (TV) DSR method for image enhancement. The existence and uniqueness of solution of the TV regularized DSR model is proved theoretically. Moreover, we generalize the TV regularized DSR model in variational framework and in PDE framework, respectively, and therefore we can incorporate more existing denoising methods into our approach. Numerical comparisons demonstrate that the proposed technique gives significant performance in terms of contrast and brightness enhancement as well as noise suppression, and therefore can obtain enhanced image with good perceptual quality.
机译:动态随机共振(DSR)是一种用于增强暗和低对比度图像的独特技术。噪声对于基于DSR的图像增强来说是必需的,并且噪声水平会与亮度同时增大,这会大大降低增强图像的感知质量,并且还会增加后续降噪的难度,因为去除高水平的噪声通常会导致严重的噪声损失。图片细节。在本文中,我们建议在增强过程中逐步并同时抑制噪声,而不是在增强过程完成后消除噪声。首先在变分框架下重写了基于传统偏微分方程(DS)的DSR模型,然后提出了一种新的总变分正则化(TV)DSR方法进行图像增强。从理论上证明了TV正则化DSR模型解的存在性和唯一性。此外,我们分别在变体框架和PDE框架中推广了电视正则化DSR模型,因此我们可以将更多现有的去噪方法纳入我们的方法中。数值比较表明,所提出的技术在对比度和亮度增强以及噪声抑制方面具有显着的性能,因此可以获得具有良好感知质量的增强图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号