首页> 外文期刊>Computers & mathematics with applications >LU-based Jacobi-like algorithms for non-orthogonal joint diagonalization
【24h】

LU-based Jacobi-like algorithms for non-orthogonal joint diagonalization

机译:非正交关节对角化的基于LU的Jacobi类算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, based on the LU decomposition, we propose three non-orthogonal Jacobi-like alternating iterative algorithms with two strategies for solving the joint diagonalization problem of a set of Hermitian matrices. In this kind of algorithm, each transformation includes one upper triangular iterative step and one lower triangular iterative step, and each step involves one parameter. The optimal parameter of each step is derived analytically. The convergence of our proposed algorithms is proven. According to this convergence analysis, the existing GNJD algorithm is revisited. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed algorithms in comparison with existing ones. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文在LU分解的基础上,提出了三种非正交的Jacobi类交替迭代算法和两种策略,用于求解一组厄米矩阵的联合对角化问题。在这种算法中,每个变换包括一个上三角迭代步骤和一个下三角迭代步骤,并且每个步骤都包含一个参数。通过分析得出每个步骤的最佳参数。我们提出的算法的收敛性得到了证明。根据这种收敛性分析,重新讨论了现有的GNJD算法。最后,通过数值仿真来说明与现有算法相比,所提算法的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号