首页> 外文期刊>Computers & mathematics with applications >Radial Basis Function generated Finite Differences for option pricing problems
【24h】

Radial Basis Function generated Finite Differences for option pricing problems

机译:径向基函数生成了期权定价问题的有限差异

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a numerical method to price options based on Radial Basis Function generated Finite Differences (RBF-FD) in space and the Backward Differentiation Formula of order 2 (BDF-2) in time. We use Gaussian RBFs that depend on a shape parameter epsilon. The choice of this parameter is crucial for the performance of the method. We chose e as const . h(-1) and we derive suitable values of the constant for different stencil sizes in 1D and 2D. This constant is independent of the problem parameters such as the volatilities of the underlying assets and the interest rate in the market. In the literature on option pricing with RBF-FD, a constant value of the shape parameter is used. We show that this always leads to ill-conditioning for decreasing h, whereas our proposed method avoids such ill-conditioning. We present numerical results for problems in 1D, 2D, and 3D demonstrating the useful features of our method such as discretization sparsity, flexibility in node placement, and easy dimensional extendability, which provide high computational efficiency and accuracy. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种基于价格的径向基函数生成有限差分(RBF-FD)和及时的2阶向后微分公式(BDF-2)的价格期权数值方法。我们使用取决于形状参数epsilon的高斯RBF。该参数的选择对于方法的性能至关重要。我们选择e作为const。 h(-1),我们得出一维和二维中不同模板尺寸的常数的合适值。该常数与问题参数(例如基础资产的波动率和市场利率)无关。在有关使用RBF-FD进行期权定价的文献中,使用了形状参数的恒定值。我们表明,这总是会导致降低h的不适,而我们提出的方法避免了这种不适。我们提供了针对1D,2D和3D问题的数值结果,展示了我们方法的有用功能,例如离散稀疏性,节点放置的灵活性以及易于扩展的尺寸,可提供较高的计算效率和准确性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号