首页> 外文期刊>Computers & mathematics with applications >A separation of the boundary geometry from the boundary functions in PIES for 3D problems modeled by the Navier-Lame equation
【24h】

A separation of the boundary geometry from the boundary functions in PIES for 3D problems modeled by the Navier-Lame equation

机译:对于由Navier-Lame方程建模的3D问题,将边界几何图形与PIES中的边界函数分离

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a modification of the Somigliana identity for the 3D Navier-Lame equation in order to analytically include in its mathematical formalism the boundary represented by Coons and Bezier parametric surface patches. As a result, the equations called the parametric integral equation system (PIES) with integrated boundary shape are obtained. The PIES formulation is independent from the boundary shape representation and it is always, for any shape, defined in the parametric domain and not on the physical boundary as in the traditional boundary integral equations (BIE). This feature is also helpful during numerical solving of PIES, as from a formal point of view, a separation between the approximation of the boundary and the boundary functions is obtained. In this paper, the generalized Chebyshev series are used to approximate the boundary functions. Numerical examples demonstrate the effectiveness of the presented strategy for boundary representation and indicate the high accuracy of the obtained results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们对3D Navier-Lame方程的Somigliana身份进行了修改,以便在其数学形式主义中分析性地包含由Coons和Bezier参数曲面补丁表示的边界。结果,获得了具有积分边界形状的方程,称为参数积分方程系统(PIES)。 PIES公式独立于边界形状表示,对于任何形状,PIES总是在参数域中定义,而不是像传统边界积分方程(BIE)那样在物理边界上定义。此功能在PIES的数值求解过程中也很有用,因为从形式上看,在边界逼近和边界函数之间获得了分离。在本文中,广义的切比雪夫级数被用来近似边界函数。数值例子证明了所提出的边界表示策略的有效性,并表明所获得结果的高精度。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号