首页> 外文期刊>Computers & mathematics with applications >Numerical analysis and testing of a stable and convergent finite element scheme for approximate deconvolution turbulence models
【24h】

Numerical analysis and testing of a stable and convergent finite element scheme for approximate deconvolution turbulence models

机译:近似反褶积湍流模型稳定收敛的有限元方案的数值分析和测试

获取原文
获取原文并翻译 | 示例

摘要

This report presents a stable and convergent finite element scheme for the approximate deconvolution turbulence models (ADM). The ADM is a popular turbulence model intensely studied lately but the computation of its numerical solution raises issues in terms of efficiency and accuracy. This report addresses this question. The proposed scheme presented herein is based on a new interpretation of the ADM model recently introduced by the author. Following this interpretation, the solution of the ADM is viewed as the average of a perturbed Navier-Stokes system. The scheme uses the Crank-Nicolson time discretization and the finite element spatial discretization and is proved to be stable and convergent provided a moderate choice of the time step is made. Numerical tests to verify the convergence rates and performance on a benchmark problem are also provided and they prove the correctness of this approach to numerically solve the ADM. (C) 2017 Elsevier Ltd. All rights reserved.
机译:该报告为近似反卷积湍流模型(ADM)提出了稳定且收敛的有限元方案。 ADM是最近被广泛研究的一种流行的湍流模型,但是其数值解的计算却带来了效率和准确性方面的问题。本报告解决了这个问题。本文提出的方案基于作者最近引入的ADM模型的新解释。按照这种解释,将ADM的解决方案视为受干扰的Navier-Stokes系统的平均值。该方案使用了Crank-Nicolson时间离散化和有限元空间离散化,并证明了该方法是稳定且收敛的,只要对时间步长进行适当选择即可。还提供了用于验证收敛速度和基准问题性能的数值测试,它们证明了这种方法对ADM进行数值求解的正确性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号