...
首页> 外文期刊>Computers & mathematics with applications >A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations
【24h】

A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations

机译:一种机器学习最小残余(ML-MRES)框架,用于面向目标的有限元离散化

获取原文
获取原文并翻译 | 示例
           

摘要

We introduce the concept of machine-learning minimal-residual (ML-MRes) finite element discretizations of partial differential equations (PDEs), which resolve quantities of interest with striking accuracy, regardless of the underlying mesh size. The methods are obtained within a machine-learning framework during which the parameters defining the method are tuned against available training data. In particular, we use a provably stable parametric Petrov-Galerkin method that is equivalent to a minimal-residual formulation using a weighted norm. While the trial space is a standard finite element space, the test space has parameters that are tuned in an off-line stage. Finding the optimal test space therefore amounts to obtaining a goal-oriented discretization that is completely tailored towards the quantity of interest. We use an artificial neural network to define the parametric family of test spaces. Using numerical examples for the Laplacian and advection equation in one and two dimensions, we demonstrate that the ML-MRes finite element method has superior approximation of quantities of interest even on very coarse meshes. (C) 2020 Elsevier Ltd. All rights reserved.
机译:我们介绍了机器学习最小剩余(ML-MRES)的概念的部分微分方程(PDE)的有限元分离子,其解决了利益的数量,无论底层网格尺寸如何。该方法在机器学习框架内获得,在此期间定义该方法的参数被调整以用于可用培训数据。特别是,我们使用可提供可提供的可稳定的参数型PETROV-GALERKIN方法,其等同于使用加权标准的最小残余制剂。虽然试验空间是标准有限元空间,但测试空间具有在离线级中调谐的参数。因此,找到最佳测试空间,以获得朝向兴趣数量完全定制的面向目标的离散化。我们使用人工神经网络来定义参数族的测试空间。在一个和二维中使用用于拉普拉斯和平面方程的数值示例,我们证明ML-MRE有限元方法即使在非常粗糙的网眼上也具有优异的感兴趣量近似。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号