首页> 外文期刊>Computers & mathematics with applications >A new two-scale computational model for hydromechanical coupling in jointed rocks
【24h】

A new two-scale computational model for hydromechanical coupling in jointed rocks

机译:联合岩石中型流体力学耦合的新型二维计算模型

获取原文
获取原文并翻译 | 示例

摘要

We develop a new computational model to describe hydro-mechanical coupling in fractured rocks composed of a linear poroelastic Biot medium and nonlinear elastic joints with constitutive response governed by the Barton-Bandis (BB) law. The model aims at capturing increase in stiffness induced by fracture closure during fluid withdrawal. The nonlinear hydro-mechanical formulation is constructed within the framework of the Discrete Fracture Model, with flow and geomechanical sub-systems coupled through a sequential iterative algorithm. The internal contact constraint arising from non-overlapping between opposite fracture faces is enforced through the weak fulfillment of the BB-law. Such a constraint is captured within the framework of the Augmented Lagrangian formulation, where the non-linear mechanical interaction is enforced adopting successive approximations of the Lagrange multiplier, interpreted as the contact pressure in the joint, supplemented by a penalty component associated with the rock stiffness. Furthermore, adopting a traditional flow based upscaling method, macroscopic permeabilities are numerically reconstructed with magnitude strongly dependent on the local stress state. Such a mechanical dependence of the homogenized properties is represented in a discrete manner through pseudo-coupling tables, with enormous potential to be explored within a preprocessing stage in reservoir simulators to compute multipliers relative to a chosen pre-stressed reference state, where input data is available. Numerical simulations are performed for some fracture arrangements illustrating the potential of the formulation proposed herein in bridging hydromechanical coupling at different scales in jointed rocks. (C) 2020 Elsevier Ltd. All rights reserved.
机译:我们开发了一种新的计算模型,以描述由线性多孔弹性Biot介质和非线性弹性接头组成的骨折岩石中的水力机械联轴器,该非线性弹性接头具有由Barton-Bandis(BB)法律控制的本构响应。该模型旨在在流体戒断过程中捕获裂缝闭合诱导的刚度增加。非线性水力机械制剂在离散裂缝模型的框架内构成,流量和地质力学子系统通过顺序迭代算法耦合。通过BB-Lave的弱势实现,强制实施来自相反骨折面之间的内部接触约束。这种约束在增强拉格朗日制剂的框架内捕获,其中非线性机械相互作用采用拉格朗日乘法器的连续近似,解释为接头中的接触压力,补充由与岩石刚度相关的惩罚组件。 。此外,采用传统的基于流量的升高方法,宏观渗透率以强烈依赖于局部应力状态的幅度数值重建。这种机械依赖性通过伪耦合表以离散方式表示,通过伪耦合表,在储库模拟器中的预处理阶段内具有巨大电位,以计算乘法器相对于所选择的预应力参考状态,其中输入数据是可用的。针对一些断裂装置进行数值模拟,示出了本文提出的制剂的电位,其在连接岩石中的不同鳞片上的桥接桥接耦合。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号