首页> 外文期刊>Computers & mathematics with applications >An Efficient and Rapid Numerical Quadrature to generate element matrices for quadrilateral and hexahedral elements in Functionally Graded Materials (FGMs)
【24h】

An Efficient and Rapid Numerical Quadrature to generate element matrices for quadrilateral and hexahedral elements in Functionally Graded Materials (FGMs)

机译:高效且快速的数正交,以在功能分级材料(FGMS)中产生四边形和六面体元素的元素矩阵

获取原文
获取原文并翻译 | 示例

摘要

This research paper introduces a robust, efficient and stabilized midpoint quadrature to generate element stiffness matrices for quadrilateral and hexahedral elements in finite element method (FEM). This new quadrature is established based on Passive Richardson extrapolation which has the inherent ability to stabilize and improve the accuracy of the extrapolated results. The new quadrature includes a simple artificial stabilizing function with Gauss one-point quadrature (1GP) as an anti-hourglass effect. For the first approximation, the 1GP (sampling point to be considered at origin (0,0)) is done to evaluate element matrices (thermal conductivity matrices, capacitance matrices etc.,) in the 4-square element ([-2, 2] x [-2, 2]) in the (xi, eta) plane. As a stabilizing function, sampling points are considered to be either at the center of the four element edges or center of the four quadrants in the reference square element with appropriate constant weighting functions. For hexahedral elements also, the element stiffness coefficients are calculated only in the center of the element and center of all the octants of the reference cubic element ([-2, 2] x [-2, 2] x [-2, 2]), the proposed method deals mostly with integer variables and sampling at (0,0,0), whereas Gauss quadrature uses lengthy float variables corresponding to irrational numbers in terms of decimals in the stiffness matrix calculations, thus consuming time. A number of standard example problems are demonstrated to assess the efficiency of the proposed method. The results of all the numerical examples are found to be in good agreement with the exact results and conventional Gauss quadrature results. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本研究论文介绍了一种稳健,有效和稳定的中点正交,以产生有限元方法(FEM)中的四边形和六面元素的元素刚度矩阵。这种新的正交基于被动理查森推断建立,具有稳定和提高外推结果的准确性的固有能力。新的正交包括一种简单的人工稳定功能,具有高斯单点正交(1GP)作为抗沙漏效应。对于第一个近似,完成1GP(在原点(0,0))中的1GP(要考虑的采样点)以评估4-平方元素中的元素矩阵(导热矩阵,电容矩阵等)([-2,2] ] X [-2,2])在(XI,ETA)平面中。作为稳定功能,采样点被认为是在参考方形元件中的四个象限的四个元素边缘或中心的中心,具有适当的恒定加权函数。对于六面体元件,元素刚度系数仅在参考立方元素([-2,2] X [-2,2] x [-2,2]的所有八个八个八个八个八个八个八个轴的中心和中心的中心)计算),所提出的方法主要用整数变量和在(0,0,0)上进行采样,而Gause正交使用与刚度矩阵计算中的小数方面的冗长浮动变量对应于非合理数量,从而消耗时间。证明了许多标准示例问题以评估所提出的方法的效率。发现所有数值例子的结果与确切的结果和传统的高斯正交结果吻合良好。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号