首页> 外文期刊>Computers & mathematics with applications >A computational investigation of preconditioning strategies and iterative methods for finite element based neurostimulation simulations
【24h】

A computational investigation of preconditioning strategies and iterative methods for finite element based neurostimulation simulations

机译:基于有限元神经刺激模拟的预处理策略和迭代方法的计算研究

获取原文
获取原文并翻译 | 示例

摘要

Computational simulations of transcranial direct current stimulation (tDCS) enable researchers and medical practitioners to investigate this form of neurostimulation with in silico experiments. For these computer-based simulations to be of practical use to the medical community, patient-specific head geometries and finely discretized computational grids must be used. As a result, solving the partial differential equation based mathematical model that governs tDCS can be computationally burdensome. Further, consider the task of identifying optimal electrode configurations and parameters for a particular patient's condition, head geometry, and therapeutic objectives; it is conceivable that hundreds of tDCS simulations could be executed. It is therefore important and necessary to identify efficient solution methods for medically-based tDCS simulations. To address this requirement, we exhaustively compare the convergence performance of geometric multigrid and the preconditioned conjugate gradient method when solving the linear system of equations generated from a finite element discretization of the tDCS governing equations. Our simulations consist of three commonly used realworld tDCS electrode montages on MRI-derived three-dimensional head models with physiologically-based inhomogeneous tissue conductivities. Simulations are realized on fine computational meshes with resolutions deemed applicable to the medical community, and as a result, our finite element solutions highlight tDCS-specific phenomena such as electric field shunting that contributes to a notable intensification of the stimulation's electric current dosage. Convergence metrics of each linear system solver are examined, and compared and linked to theoretical estimates. It is shown that the conjugate gradient method achieves superior convergence rates only when preconditioned with an appropriately configured multigrid algorithm. In addition, it is demonstrated that physiological characteristics of tDCS simulations make multigrid as a stand-alone solver highly ineffective, despite the fact that this method is typically effective in solving the tDCS-based Poisson problem. By identifying the solution methods optimal for medically-driven tDCS simulations, our results extend simulation support to high-resolution and high-volume computing applications, and will ultimately help guide tDCS numerical simulations towards becoming an integrated aspect of the patient-specific tDCS treatment protocol. (C) 2020 Elsevier Ltd. All rights reserved.
机译:经颅直流刺激(TDC)的计算模拟使研究人员和医学从业者能够研究这种形式的硅实验。对于这些基于计算机的模拟,对医学界的实际用途,必须使用特定于患者的头部几何形状和精细离散的计算网格。结果,求解管理TDC的局部微分方程数学模型可以计算繁重。此外,考虑识别特定患者条件,头部几何和治疗目标的最佳电极配置和参数的任务;可以想到,可以执行数百个TDC模拟。因此,对于识别基于医学的TDCS模拟的有效解决方法是重要的并且是必要的。为了解决这一要求,我们在求解从TDC控制方程的有限元离散化产生的方程的线性系统时,我们彻底地比较了几何多物流和预先处理的共轭梯度方法的收敛性能。我们的模拟包括三种常用的RealWorld TDCS电极剪辑,用于MRI衍生的三维头部模型,具有基于生理学的不均匀组织传导性。在适用于医学界的解决方案的精细计算网眼上实现了模拟,因此我们的有限元件突出了特定于TDC的现象,例如电场分流,这有助于刺激电流剂量的显着增强。检查每个线性系统求解器的收敛度量,并与理论估计进行比较和链接。结果表明,仅当用适当配置的多重域算法预处理时,共轭梯度方法才能实现优异的收敛速率。此外,尽管这种方法在解决基于TDCS的泊松问题方面是有效的,但TDCS模拟的生理特性使Multigrid作为一个高度无效的独立求解器。通过识别用于医学驱动的TDC模拟的最佳解决方法,我们的结果将模拟支持扩展到高分辨率和大容量计算应用,并最终帮助指导TDC数值模拟成为特定于患者特定TDCS治疗方案的综合方面。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号